

Mirza Rahim Baig, Thomas V. Joseph, Nipun Sadvilkar,

Mohan Kumar Silaparasetty, and Anthony So

Learn the skills you need to develop your own

next-generation deep learning models with

TensorFlow and Keras

The

Deep
Learning
Workshop

The Deep Learning Workshop

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Mirza Rahim Baig, Thomas V. Joseph, Nipun Sadvilkar,
Mohan Kumar Silaparasetty, and Anthony So

Reviewers: Ankit Bhatia, Akshay Chauhan, Francesco Mosconi, Nagendra Nagaraj,
Bernard Ong, and Robert Ridley

Managing Editor: Abhishek Rane

Acquisitions Editors: Royluis Rodrigues, Sneha Shinde, and Archie Vankar

Production Editor: Roshan Kawale

Editorial Board: Megan Carlisle, Samuel Christa, Mahesh Dhyani, Heather Gopsill,
Manasa Kumar, Alex Mazonowicz, Monesh Mirpuri, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Erol Staveley, Ankita Thakur,
Nitesh Thakur, and Jonathan Wray

First Published: July 2020

Production Reference: 1300720

ISBN: 978-1-83921-985-6

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface i

Chapter 1: Building Blocks of Deep Learning 1

Introduction .. 2

AI, Machine Learning, and Deep Learning .. 2

Machine Learning .. 3

Deep Learning .. 5

Using Deep Learning to Classify an Image ... 6

Pre-Trained Models ..7

The Google Text-to-Speech API ...7

Prerequisite Packages for the Demo ..7

Exercise 1.01: Image and Speech Recognition Demo 7

Deep Learning Models .. 12

The Multi-Layer Perceptron...13

Convolutional Neural Networks ...14

Recurrent Neural Networks ..16

Generative Adversarial Networks .. 17

Introduction to TensorFlow ... 18

Constants .. 21

Variables ... 22

Defining Functions in TensorFlow ..23

Exercise 1.02: Implementing a Mathematical Equation 23

Linear Algebra with TensorFlow .. 25

Exercise 1.03: Matrix Multiplication Using TensorFlow 27

The reshape Function .. 29

Exercise 1.04: Reshaping Matrices Using the reshape()
Function in TensorFlow ... 31

The argmax Function ... 34

Exercise 1.05: Implementing the argmax() Function 36

Optimizers .. 38

Exercise 1.06: Using an Optimizer for a Simple Linear Regression 39

Activity 1.01: Solving a Quadratic Equation Using an Optimizer 42

Summary .. 43

Chapter 2: Neural Networks 45

Introduction ... 46

Neural Networks and the Structure of Perceptrons 47

Input Layer ..49

Weights ..50

Bias ...51

Net Input Function ...51

Activation Function (G) ...52

Perceptrons in TensorFlow ..53

Exercise 2.01: Perceptron Implementation .. 55

Training a Perceptron ... 58

Perceptron Training Process in TensorFlow ... 60

Exercise 2.02: Perceptron as a Binary Classifier 62

Multiclass Classifier ... 67

The Softmax Activation Function ..67

Exercise 2.03: Multiclass Classification Using a Perceptron 71

MNIST Case Study .. 76

Exercise 2.04: Classifying Handwritten Digits .. 77

Keras as a High-Level API ... 79

Exercise 2.05: Binary Classification Using Keras 79

Multilayer Neural Network or Deep Neural Network 84

ReLU Activation Function .. 86

Exercise 2.06: Multilayer Binary Classifier .. 87

Exercise 2.07: Deep Neural Network on MNIST Using Keras 92

Exploring the Optimizers and Hyperparameters
of Neural Networks .. 97

Gradient Descent Optimizers ... 97

The Vanishing Gradient Problem ... 99

Hyperparameter Tuning ... 99

Overfitting and Dropout ... 100

Activity 2.01: Build a Multilayer Neural Network
to Classify Sonar Signals .. 101

Summary .. 102

Chapter 3: Image Classification with
Convolutional Neural Networks (CNNs) 105

Introduction ... 106

Digital Images .. 108

Image Processing .. 109

Convolution Operations .. 110

Exercise 3.01: Implementing a Convolution Operation 113

Stride ... 114

Padding ... 115

Convolutional Neural Networks ... 118

Pooling Layers ... 120

CNNs with TensorFlow and Keras ... 121

Exercise 3.02: Recognizing Handwritten Digits (MNIST)
with CNN Using KERAS ... 123

Data Generator .. 128

Exercise 3.03: Classifying Cats versus Dogs
with Data Generators .. 130

Data Augmentation .. 135

Horizontal Flipping .. 136

Vertical Flipping .. 137

Zooming .. 137

Horizontal Shifting ... 138

Vertical Shifting .. 138

Rotating ... 139

Shearing .. 139

Exercise 3.04: Image Classification (CIFAR-10)
with Data Augmentation ... 140

Activity 3.01: Building a Multiclass Classifier Based
on the Fashion MNIST Dataset ... 144

Saving and Restoring Models .. 145

Saving the Entire Model ...146

Saving the Architecture Only ..146

Saving the Weights Only ..147

Transfer Learning ... 147

Fine-Tuning .. 149

Activity 3.02: Fruit Classification with Transfer Learning 150

Summary .. 152

Chapter 4: Deep Learning for Text – Embeddings 155

Introduction ... 156

Deep Learning for Natural Language Processing 158

Getting Started with Text Data Handling .. 159

Text Preprocessing .. 159

Tokenization ..160

Normalizing Case ..162

Removing Punctuation ...163

Removing Stop Words ..164

Exercise 4.01: Tokenizing, Case Normalization,
Punctuation, and Stop Word Removal .. 166

Stemming and Lemmatization ... 169

Exercise 4.02: Stemming Our Data .. 172

Beyond Stemming and Lemmatization ...173

Downloading Text Corpora Using NLTK ...174

Activity 4.01: Text Preprocessing of the
'Alice in Wonderland' Text .. 176

Text Representation Considerations ... 178

Classical Approaches to Text Representation 179

One-Hot Encoding .. 179

Exercise 4.03: Creating One-Hot Encoding for Our Data 181

Term Frequencies .. 183

The TF-IDF Method ... 187

Exercise 4.04: Document-Term Matrix with TF-IDF 188

Summarizing the Classical Approaches .. 190

Distributed Representation for Text .. 191

Word Embeddings and Word Vectors .. 192

word2vec ...194

Training Our Own Word Embeddings .. 197

Semantic Regularities in Word Embeddings ... 200

Exercise 4.05: Vectors for Phrases ... 201

Effect of Parameters – "size" of the Vector...203

Effect of Parameters – "window size" ..204

Skip-gram versus CBOW .. 204

Effect of Training Data ...205

Exercise 4.06: Training Word Vectors on Different Datasets 205

Using Pre-Trained Word Vectors .. 207

Bias in Embeddings – A Word of Caution .. 209

Other Notable Approaches to Word Embeddings 210

Activity 4.02: Text Representation for Alice in Wonderland 210

Summary .. 212

Chapter 5: Deep Learning for Sequences 215

Introduction ... 216

Working with Sequences .. 217

Time Series Data – Stock Price Prediction .. 219

Exercise 5.01: Visualizing Our Time-Series Data 221

Recurrent Neural Networks .. 224

Loops – An Integral Part of RNNs ... 228

Exercise 5.02: Implementing the Forward Pass
of a Simple RNN Using TensorFlow ... 230

The Flexibility and Versatility of RNNs .. 233

Preparing the Data for Stock Price Prediction 237

Parameters in an RNN ... 240

Training RNNs .. 241

Exercise 5.03: Building Our First Plain RNN Model 243

Model Training and Performance Evaluation 245

1D Convolutions for Sequence Processing ... 249

Exercise 5.04: Building a 1D Convolution-Based Model 251

Performance of 1D Convnets ... 255

Using 1D Convnets with RNNs ... 255

Exercise 5.05: Building a Hybrid (1D Convolution
and RNN) Model ... 256

Activity 5.01: Using a Plain RNN Model to Predict
IBM Stock Prices ... 260

Summary .. 261

Chapter 6: LSTMs, GRUs, and Advanced RNNs 265

Introduction ... 266

Long-Range Dependence/Influence ... 266

The Vanishing Gradient Problem .. 267

Sequence Models for Text Classification ... 268

Loading Data .. 269

Staging and Preprocessing Our Data .. 271

The Embedding Layer ... 272

Building the Plain RNN Model ... 275

Exercise 6.01: Building and Training an RNN Model
for Sentiment Classification ... 276

Making Predictions on Unseen Data .. 280

LSTMs, GRUs, and Other Variants ... 283

LSTMs .. 284

Parameters in an LSTM .. 288

Exercise 6.02: LSTM-Based Sentiment Classification Model 288

LSTM versus Plain RNNs .. 291

Gated Recurrence Units ... 292

Exercise 6.03: GRU-Based Sentiment Classification Model 294

LSTM versus GRU ... 297

Bidirectional RNNs .. 297

Exercise 6.04: Bidirectional LSTM-Based Sentiment
Classification Model ... 299

Stacked RNNs .. 301

Exercise 6.05: Stacked LSTM-Based Sentiment
Classification Model ... 302

Summarizing All the Models .. 305

Attention Models .. 306

More Variants of RNNs ... 309

Activity 6.01: Sentiment Analysis of Amazon Product Reviews 309

Summary .. 312

Chapter 7: Generative Adversarial Networks 315

Introduction ... 316

Key Components of Generative Adversarial Networks 318

Problem Statement – Generating a Distribution
Similar to a Given Mathematical Function ... 319

Process 1 – Generating Real Data from the Known Function 320

Exercise 7.01: Generating a Data Distribution
from a Known Function ... 321

Process 2 – Creating a Basic Generative Network 325

Building the Generative Network .. 325

Sequential() ... 326

Kernel Initializers ..326

Dense Layers ...326

Activation Functions ...327

Exercise 7.02: Building a Generative Network 328

Setting the Stage for the Discriminator Network 333

Process 3 – Discriminator Network ... 334

Implementing the Discriminator Network ..334

Function to Generate Real Samples ...335

Functions to Generate Fake Samples ...336

Building the Discriminator Network ..337

Training the Discriminator Network ..337

Exercise 7.03: Implementing the Discriminator Network 338

Process 4 – Implementing the GAN ... 344

Integrating All the Building Blocks ...344

Process for Building the GAN .. 347

The Training Process ... 347

Exercise 7.04: Implementing the GAN ... 348

Deep Convolutional GANs ... 359

Building Blocks of DCGANs ... 359

Generating Handwritten Images Using DCGANs 365

The Training Process ..367

Exercise 7.05: Implementing the DCGAN .. 368

Analysis of Sample Plots ... 378

Common Problems with GANs ... 380

Mode Collapse ...380

Convergence Failure ...380

Activity 7.01: Implementing a DCGAN for the MNIST
Fashion Dataset ... 381

Summary .. 383

Appendix 387

Index 439

Preface

ii | Preface

About the Book
Are you fascinated by how deep learning powers intelligent applications such
as self-driving cars, virtual assistants, facial recognition devices, and chatbots to
process data and solve complex problems? Whether you are familiar with machine
learning or are new to this domain, The Deep Learning Workshop will make it easy
for you to understand deep learning with the help of interesting examples and
exercises throughout.

The book starts by highlighting the relationship between deep learning, machine
learning, and artificial intelligence and helps you get comfortable with the TensorFlow
2.0 programming structure using hands-on exercises. You'll understand neural
networks, the structure of a perceptron, and how to use TensorFlow to create and
train models. The book will then let you explore the fundamentals of computer vision
by performing image recognition exercises with Convolutional Neural Networks
(CNNs) using Keras. As you advance, you'll be able to make your model more
powerful by implementing text embedding and sequencing the data using popular
deep learning solutions. Finally, you'll get to grips with bidirectional Recurrent
Neural Networks (RNNs) and build Generative Adversarial Networks (GANs) for
image synthesis.

By the end of this deep learning book, you'll have learned the skills essential for
building deep learning models with TensorFlow and Keras.

Audience

If you are interested in machine learning and want to create and train deep learning
models using TensorFlow and Keras, this workshop is for you. A solid understanding
of Python and its packages, along with basic machine learning concepts, will help you
to learn the topics quickly.

About the Chapters

Chapter 1, Building Blocks of Deep Learning, discusses the practical applications of deep
learning. One such application includes a hands-on code demo you can run right
away to recognize an image from the internet. Through practical exercises, you'll also
learn the key code implementations of TensorFlow 2.0 that will help you build exciting
neural network models in the coming chapters.

Chapter 2, Neural Networks, teaches you the structure of artificial neural networks.
Using TensorFlow 2.0, you will not only implement a neural network, but also train
it. You will later build multiple deep neural networks with different configurations,
thereby experiencing the neural network training process first-hand.

About the Book | iii

Chapter 3, Image Classification with Convolutional Neural Networks (CNNs), covers image
processing, how it works, and how that knowledge can be applied to Convolutional
Neural Networks (CNNs). Through practical exercises, you will create and train CNN
models that can be used to recognize images of handwritten digits and even fruits.
You'll also learn some key concepts such as pooling layers, data augmentation, and
transfer learning.

Chapter 4, Deep Learning for Text – Embeddings, introduces you to the world of Natural
Language Processing. You will first perform text preprocessing, an important skill
when dealing with raw text data. You will implement classical approaches to text
representation, such as one-hot encoding and the TF-lDF approach. Later in the
chapter, you will learn about embeddings, and use the Skip-gram and Continuous Bag
of Words algorithms to generate your own word embeddings.

Chapter 5, Deep Learning for Sequences, shows you how to work on a classic sequence
processing task—stock price prediction. You will first create a model based on
Recurrent Neural Networks (RNNs), then implement a 1D convolutions-based
model and compare its performance with that RNN model. You will combine both
approaches by combining RNNs with 1D convolutions in a hybrid model.

Chapter 6, LSTMs, GRUs, and Advanced RNNs, reviews RNNs' practical drawbacks and
how Long Short Term Memory (LSTM) models help overcome them. You will build
a model that analyzes sentiments in movie reviews and study the inner workings
of Gated Recurring Units (GRUs). Throughout the chapter, you will create models
based on plain RNNs, LSTMs, and GRUs and, at the end of the chapter, compare
their performance.

Chapter 7, Generative Adversarial Networks, introduces you to generative adversarial
networks (GANs) and their basic components. Through practical exercises, you will
use GANs to generate a distribution that mimics a data distribution produced by a
sine function. You will also learn about deep convolutional GANs and implement
them in an exercise. Toward the end of the chapter, you will create GANs that are
able to replicate images with convincing accuracy.

Conventions

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"Load the MNIST dataset using mnist.load_data()"

Words that you see on the screen (for example, in menus or dialog boxes) appear in
the same format.

iv | Preface

A block of code is set as follows:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

train_scaled = scaler.fit_transform(train_data)

test_scaled = scaler.transform(test_data)

New terms and important words are shown like this:

The first step in preprocessing is inevitably tokenization—splitting the raw input
text sequence into tokens. Long code snippets are truncated and the corresponding
names of the code files on GitHub are placed at the top of the truncated code. The
permalinks to the entire code are placed below the code snippet. It should look
as follows:

Exercise7.04.ipynb

Function to generate real samples
def realData(loc,batch):
 """
 loc is the random location or mean
 around which samples are centered
 """
 # Generate numbers to right of the random point
 xr = np.arange(loc,loc+(0.1*batch/2),0.1)
 xr = xr[0:int(batch/2)]
 # Generate numbers to left of the random point
 xl = np.arange(loc-(0.1*batch/2),loc,0.1)

The complete code for this step can be found at https://packt.live/3iIJHVS.

Code Presentation

Lines of code that span multiple lines are split using a backslash (\). When the code
is executed, Python will ignore the backslash, and treat the code on the next line as a
direct continuation of the current line.

For example:

history = model.fit(X, y, epochs=100, batch_size=5, verbose=1, \

 validation_split=0.2, shuffle=False)

https://packt.live/3iIJHVS

About the Book | v

Comments are added into code to help explain specific bits of logic. Single-line
comments are denoted using the # symbol, as follows:

Print the sizes of the dataset

print("Number of Examples in the Dataset = ", X.shape[0])

print("Number of Features for each example = ", X.shape[1])

Multi-line comments are enclosed by triple quotes, as shown below:

"""

Define a seed for the random number generator to ensure the

result will be reproducible

"""

seed = 1

np.random.seed(seed)

random.set_seed(seed)

Setting up Your Environment

Before we explore the book in detail, we need to set up specific software and tools.
In the following section, we shall see how to do that.

Hardware Requirements

For the optimal user experience, we recommend 8 GB RAM.

Installing Anaconda on your system

All the exercises and activities in this book will be executed in Jupyter Notebooks.
To install Jupyter on Windows, macOS, or Linux we first need to install Anaconda.
Installing Anaconda will also install Python.

1. Head to https://www.anaconda.com/distribution/ to install the Anaconda Navigator,
which is an interface through which you can access your local Jupyter Notebook.

https://www.anaconda.com/distribution/

vi | Preface

2. Now, based on your operating system (Windows, macOS, or Linux) you need to
download the Anaconda Installer. Select your operating system first and then
choose the Python version. For this book, it is recommended that you use the
latest version of Python.

Figure 0.1: The Anaconda home screen

3. To check if Anaconda Navigator is correctly installed, look for Anaconda
Navigator in your applications. Look for the icon shown below. However, note
that the icon's aesthetics may vary slightly depending on your operating system.

Figure 0.2 Anaconda Navigator icon

About the Book | vii

4. Click the icon to open Anaconda Navigator. It may take a while to load for the
first time, but upon successful installation, you should see a similar screen:

Figure 0.3 Anaconda Navigator icon

Launching Jupyter Notebook

To launch Jupyter Notebook from the Anaconda Navigator, follow these steps:

1. Open Anaconda Navigator. You should see the following screen:

Figure 0.4: Anaconda installation screen

viii | Preface

2. Now, click Launch under the Jupyter Notebook panel to start the notebook
on your local system:

Figure 0.5: Jupyter Notebook launch option

You have successfully installed Jupyter Notebook onto your system. You can also
open a Jupyter Notebook by simply running the command jupyter notebook in
the Terminal or Anaconda Prompt.

Installing Libraries

pip comes pre-installed with Anaconda. Once Anaconda is installed on your
machine, all the required libraries can be installed using pip, for example, pip
install numpy. Alternatively, you can install all the required libraries using pip
install –r requirements.txt. You can find the requirements.txt file at
https://packt.live/303E4dD.

The exercises and activities will be executed in Jupyter Notebooks. Jupyter is a
Python library and can be installed in the same way as the other Python libraries –
that is, with pip install jupyter, but fortunately, it comes pre-installed with
Anaconda. To open a notebook, simply run the command jupyter notebook in
the Terminal or Command Prompt.

https://packt.live/303E4dD

About the Book | ix

Installing TensorFlow 2.0

Before installing TensorFlow 2.0, ensure that you have the latest version of pip
installed on your system. You can check that by using the following command:

pip --version

To install TensorFlow 2.0, the version of pip on your system must be greater than
19.0. You can upgrade your version of pip using the following command on
Windows, Linux, or macOS:

pip install --upgrade pip

Once upgraded, use the following command to install TensorFlow on Windows, Linux,
or macOS:

pip install --upgrade tensorflow

On Linux and macOS, if elevated rights are required, use the following command:

sudo pip install --upgrade tensorflow

Note

TensorFlow is not supported on Windows with Python 2.7.

Installing Keras

To install Keras on Windows, macOS, or Linux, use the following command:

pip install keras

On Linux and macOS, if elevated rights are required, use the following command:

sudo pip install keras

x | Preface

Accessing the Code Files

You can find the complete code files of this book at https://packt.live/3edmwj4. You
can also run many activities and exercises directly in your web browser by using the
interactive lab environment at https://packt.live/2CGCWUz.

We've tried to support interactive versions of all activities and exercises, but we
recommend a local installation as well for instances where this support isn't available.

Note

This book contains certain code snippets that read data from CSV files. It
is assumed that the CSV files are stored in the same folder as the Jupyter
Notebook. In case you have stored them elsewhere, you'll have to modify
the path.

If you have any issues or questions about installation, please email us at
workshops@packt.com.

https://packt.live/3edmwj4
https://packt.live/2CGCWUz

Introduction

In this chapter, you will be introduced to deep learning and its relationship
with artificial intelligence and machine learning. We will also learn about
some of the important deep learning architectures, such as the multi-layer
perceptron, convolutional neural networks, recurrent neural networks, and
generative adversarial networks. As we progress, we will get hands-on
experience with the TensorFlow framework and use it to implement a few
linear algebra operations. Finally, we will be introduced to the concept of
optimizers. We will understand their role in deep learning by utilizing them
to solve a quadratic equation. By the end of this chapter, you will have a
good understanding of what deep learning is and how programming with
TensorFlow works.

Building Blocks of Deep

Learning

1

2 | Building Blocks of Deep Learning

Introduction
You have just come back from your yearly vacation. Being an avid social media user,
you are busy uploading your photographs to your favorite social media app. When
the photos get uploaded, you notice that the app automatically identifies your face
and tags you in them almost instantly. In fact, it does that even in group photos. Even
in some poorly lit photos, you notice that the app has, most of the time, tagged you
correctly. How does the app learn how to do that?

To identify a person in a picture, the app requires accurate information on the
person's facial structure, bone structure, eye color, and many other details. But when
you used that photo app, you didn't have to feed all these details explicitly to the app.
All you did was upload your photos, and the app automatically began identifying you
in them. How did the app know all these details?

When you uploaded your first photo to the app, the app would have asked you to
tag yourself. When you manually tagged yourself, the app automatically "learned" all
the information it needed to know about your face. Then, every time you upload a
photo, the app uses the information it learned to identify you. It improves when you
manually tag yourself in photos in which the app incorrectly tagged you.

This ability of the app to learn new details and improve itself with minimal human
intervention is possible due to the power of deep learning (DL). Deep learning is a
part of artificial intelligence (AI) that helps a machine learn by recognizing patterns
from labeled data. But wait a minute, isn't that what machine learning (ML) does?
Then what is the difference between deep learning and machine learning? What is the
point of confluence among domains such as AI, machine learning, and deep learning?
Let's take a quick look.

AI, Machine Learning, and Deep Learning

Artificial intelligence is the branch of computer science aimed at developing machines
that can simulate human intelligence. Human intelligence, in a simplified manner,
can be explained as decisions that are taken based on the inputs received from our
five senses – sight, hearing, touch, smell, and taste. AI is not a new field and has been
in vogue since the 1950s. Since then, there have been multiple waves of ecstasy and
agony within this domain. The 21st century has seen a resurgence in AI following the
big strides made in computing, the availability of data, and a better understanding
of theoretical underpinnings. Machine learning and deep learning are subfields of AI
and are increasingly used interchangeably.

Introduction | 3

The following figure depicts the relationship between AI, ML, and DL:

Figure 1.1: Relationship between AI, ML, and DL

Machine Learning

Machine learning is the subset of AI that performs specific tasks by identifying
patterns within data and extracting inferences. The inferences that are derived from
data are then used to predict outcomes on unseen data. Machine learning differs
from traditional computer programming in its approach to solving specific tasks.
In traditional computer programming, we write and execute specific business rules
and heuristics to get the desired outcomes. However, in machine learning, the rules
and heuristics are not explicitly written. These rules and heuristics are learned by
providing a dataset. The dataset provided for learning the rules and heuristics is
called a training dataset. The whole process of learning and inferring is
called training.

4 | Building Blocks of Deep Learning

Learning rules and heuristics is done using different algorithms that use statistical
models for that purpose. These algorithms make use of many representations of data
for learning. Each such representation of data is called an example. Each element
within an example is called a feature. The following is an example of the famous IRIS
dataset (https://archive.ics.uci.edu/ml/datasets/Iris). This dataset is a representation of
different species of iris flowers based on different characteristics, such as the length
and width of their sepals and petals:

Figure 1.2: Sample data from the IRIS dataset

In the preceding dataset, each row of data represents an example, and each column
is a feature. Machine learning algorithms make use of these features to draw
inferences from the data. The veracity of the models, and thereby the outcomes that
are predicted, depend a lot on the features of the data. If the features provided to
the machine learning algorithm are a good representation of the problem statement,
the chances of getting a good result are high. Some examples of machine learning
algorithms are linear regression, logistic regression, support vector machines, random
forest, and XGBoost.

Even though traditional machine learning algorithms are useful for a lot of use
cases, they have a lot of dependence on the quality of the features to get superior
outcomes. The creation of features is a time-consuming art and requires a lot of
domain knowledge. However, even with comprehensive domain knowledge, there
are still limitations on transferring that knowledge to derive features, thereby
encapsulating the nuances of the data generating processes. Also, with the increasing
complexity of the problems that are tackled with machine learning, particularly with
the advent of unstructured data (images, voice, text, and so on), it can be almost
impossible to create features that represent the complex functions, which, in turn,
generate data. As a result, there is often a need to find a different approach to solving
complex problems; that is where deep learning comes into play.

https://archive.ics.uci.edu/ml/datasets/Iris

Introduction | 5

Deep Learning

Deep learning is a subset of machine learning and an extension of a certain kind
of algorithm called Artificial Neural Networks (ANNs). Neural networks are not a
new phenomenon. Neural networks were created in the first half of the 1940s.
The development of neural networks was inspired by the knowledge of how the
human brain works. Since then, there have been several ups and downs in this field.
One defining moment that renewed enthusiasm around neural networks was the
introduction of an algorithm called backpropagation by stalwarts in the field such
as Geoffrey Hinton. For this reason, Hinton is widely regarded as the 'Godfather
of Deep Learning'. We will be discussing neural networks in depth in Chapter 2,
Neural Networks.

ANNs with multiple (deep) layers lie at the heart of deep learning. One defining
characteristic of deep learning models is their ability to learn features from the
input data. Unlike traditional machine learning, where there is the need to create
features, deep learning excels in learning different hierarchies of features across
multiple layers. Say, for example, we are using a deep learning model to detect faces.
The initial layers of the model will learn low-level approximations of a face, such as
the edges of the face, as shown in Figure 1.3. Each succeeding layer takes the lower
layers' features and puts them together to form more complex features. In the case
of face detection, if the initial layer has learned to detect edges, the subsequent layers
will put these edges together to form parts of a face such as the nose or eyes. This
process continues with each successive layer, with the final layer generating an image
of a human face:

Figure 1.3: Deep learning model for detecting faces

6 | Building Blocks of Deep Learning

Note

The preceding image is sourced from the popular research paper:
Lee, Honglak & Grosse, Roger & Ranganath, Rajesh & Ng, Andrew.
(2011). Unsupervised Learning of Hierarchical Representations with
Convolutional Deep Belief Networks. Commun. ACM. 54. 95-103.
10.1145/2001269.2001295.

Deep learning techniques have made great strides over the past decade. There are
different factors that have led to the exponential rise of deep learning techniques.
At the top of the list is the availability of large quantities of data. The digital age,
with its increasing web of connected devices, has generated lots of data, especially
unstructured data. This, in turn, has fueled the large-scale adoption of deep learning
techniques as they are well-suited to handle large unstructured data.

Another major factor that has led to the rise in deep learning is the strides that
have been made in computing infrastructure. Deep learning models that have large
numbers of layers and millions of parameters necessitate great computing power.
The advances in computing layers such as Graphical Processing Units (GPUs) and
Tensor Processing Units (TPUs) at an affordable cost has led to the large-scale
adoption of deep learning.

The pervasiveness of deep learning was also accelerated by open sourcing different
frameworks in order to build and implement deep learning models. In 2015,
the Google Brain team open sourced the TensorFlow framework and since then
TensorFlow has grown to be one of the most popular frameworks for deep learning.
The other major frameworks available are PyTorch, MXNet, and Caffe. We will be
using the TensorFlow framework in this book.

Before we dive deep into the building blocks of deep learning, let's get our hands dirty
with a quick demo that illustrates the power of deep learning models. You don't need
to know any of the code that is presented in this demo. Simply follow the instructions
and you'll be able to get a quick glimpse of the basic capabilities of deep learning.

Using Deep Learning to Classify an Image

In the exercise that follows, we will classify an image of a pizza and convert the
resulting class text into speech. To classify the image, we will be using a pre-trained
model. The conversion of text into speech will be done using a freely available API
called Google Text-to-Speech (gTTS). Before we get into it, let's understand some of
the key building blocks of this demo.

Introduction | 7

Pre-Trained Models

Training a deep learning model requires a lot of computing infrastructure and time,
with big datasets. However, to aid with research and learning, the deep learning
community has also made models that have been trained on large datasets available.
These pre-trained models can be downloaded and used for predictions or can be
used for further training. In this demo, we will be using a pre-trained model called
ResNet50. This model is available along with the Keras package. This pre-trained
model can predict 1,000 different classes of objects that we encounter in our daily
lives, such as birds, animals, automobiles, and more.

The Google Text-to-Speech API

Google has made its Text-to-Speech algorithm available for limited use. We will be
using this algorithm to convert the predicted text into speech.

Prerequisite Packages for the Demo

For this demo to work, you will need the following packages installed on
your machine:

• TensorFlow 2.0

• Keras

• gTTS

Please refer to the Preface to understand the process of installing the first two
packages. Installing gTTS will be shown in the exercise. Let's dig into the demo.

Exercise 1.01: Image and Speech Recognition Demo

In this exercise, we will demonstrate image recognition and speech-to-text conversion
using deep learning models. At this point, you will not be able to understand each
and every line of the code. This will be explained later. For now, just execute the code
and find out how easy it is to build deep learning and AI applications with TensorFlow.
Follow these steps to complete this exercise:

1. Open a Jupyter Notebook and name it Exercise 1.01. For details on how to start a
Jupyter Notebook, please refer to the preface.

2. Import all the required libraries:

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.preprocessing.image import img_to_array

8 | Building Blocks of Deep Learning

from tensorflow.keras.applications.resnet50 import ResNet50

from tensorflow.keras.preprocessing import image

from tensorflow.keras.applications.resnet50 \

import preprocess_input

from tensorflow.keras.applications.resnet50 \

import decode_predictions

Note

The code snippet shown here uses a backslash (\) to split the logic
across multiple lines. When the code is executed, Python will ignore the
backslash, and treat the code on the next line as a direct continuation of the
current line.

Here is a brief description of the packages we'll be importing:

load_img: Loads the image into the Jupyter Notebook

img_to_array: Converts the image into a NumPy array, which is the desired
format for Keras

preprocess_input: Converts the input into a format that's acceptable for
the model

decode_predictions: Converts the numeric output of the model prediction
into text labels

Resnet50: This is the pre-trained image classification model

3. Create an instance of the pre-trained Resnet model:

mymodel = ResNet50()

You should get a message similar to the following as it downloads:

Figure 1.4: Loading Resnet50

Introduction | 9

Resnet50 is a pre-trained image classification model. For first-time users, it will
take some time to download the model into your environment.

4. Download an image of a pizza from the internet and store it in the same folder
that you are running the Jupyter Notebook in. Name the image im1.jpg.

Note

You can also use the image we are using by downloading it from this link:
https://packt.live/2AHTAC9

5. Load the image to be classified using the following command:

myimage = load_img('im1.jpg', target_size=(224, 224))

If you are storing the image in another folder, the complete path of the location
where the image is located has to be given in place of the im1.jpg command.
For example, if the image is stored in D:/projects/demo, the code should be
as follows:

myimage = load_img('D:/projects/demo/im1.jpg', \

 target_size=(224, 224))

6. Let's display the image using the following command:

myimage

https://packt.live/2AHTAC9

10 | Building Blocks of Deep Learning

The output of the preceding command will be as follows:

Figure 1.5: Output displayed after loading the image

7. Convert the image into a numpy array as the model expects it in this format:

myimage = img_to_array(myimage)

8. Reshape the image into a four-dimensional format since that's what is expected
by the model:

myimage = myimage.reshape((1, 224, 224, 3))

9. Prepare the image for submission by running the preprocess_input()
function:

myimage = preprocess_input(myimage)

10. Run the prediction:

myresult = mymodel.predict(myimage)

11. The prediction results in a number that needs to be converted into the
corresponding label in text format:

mylabel = decode_predictions(myresult)

12. Next, type in the following code to display the label:

mylabel = mylabel[0][0]

Introduction | 11

13. Print the label using the following code:

print("This is a : " + mylabel[1])

If you have followed the steps correctly so far, the output will be as follows:

This is a : pizza

The model has successfully identified our image. Interesting, isn't it? In the next
few steps, we'll take this a step further and convert this result into speech.

Tip

While we have used an image of a pizza here, you can use just about any
image with this model. We urge you to try out this exercise multiple times
with different images.

14. Prepare the text to be converted into speech:

sayit="This is a "+mylabel[1]

15. Install the gtts package, which is required for converting text into speech.
This can be implemented in the Jupyter Notebook, as follows:

!pip install gtts

16. Import the required libraries:

from gtts import gTTS

import os

The preceding code will import two libraries. One is gTTS, that is, Google Text-
to-Speech, which is a cloud-based open source API for converting text into
speech. Another is the os library that is used to play the resulting audio file.

17. Call the gTTS API and pass the text as a parameter:

myobj = gTTS(text=sayit)

Note

You need to be online while running the preceding step.

12 | Building Blocks of Deep Learning

18. Save the resulting audio file. This file will be saved in the home directory where
the Jupyter Notebook is being run.

myobj.save("prediction.mp3")

Note

You can also specify the path where you want it to be saved by including
the absolute path in front of the name; for example, (myobj.save('D:/
projects/prediction.mp3').

19. Play the audio file:

os.system("prediction.mp3")

If you have correctly followed the preceding steps, you will hear the words This
is a pizza being spoken.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZPZx8B.

You can also run this example online at https://packt.live/326cRIu.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we learned how to build a deep learning model by making use of
publicly available models using a few lines of code in TensorFlow. Now that you have
got a taste of deep learning, let's move forward and learn about the different building
blocks of deep learning.

Deep Learning Models

At the heart of most of the popular deep learning models are ANNs, which are
inspired by our knowledge of how the brain works. Even though no single model
can be called perfect, different models perform better in different scenarios. In the
sections that follow, we will learn about some of the most prominent models.

https://packt.live/2ZPZx8B
https://packt.live/326cRIu

Introduction | 13

The Multi-Layer Perceptron

The multi-layer perceptron (MLP) is a basic type of neural network. An MLP is also
known as a feed-forward network. A representation of an MLP can be seen in the
following figure:

Figure 1.6: MLP representation

One of the basic building blocks of an MLP (or any neural network) is a neuron. A
network consists of multiple neurons connected to successive layers. At a very basic
level, an MLP will consist of an input layer, a hidden layer, and an output layer. The
input layer will have neurons equal to the input data. Each input neuron will have
a connection to all the neurons of the hidden layer. The final hidden layer will be
connected to the output layer. The MLP is a very useful model and can be tried out on
various classification and regression problems. The concept of an MLP will be covered
in detail in Chapter 2, Neural Networks.

14 | Building Blocks of Deep Learning

Convolutional Neural Networks

A convolutional neural network (CNN) is a class of deep learning model that is
predominantly used for image recognition. When we discussed the MLP, we saw
that each neuron in a layer is connected to every other neuron in the subsequent
layer. However, CNNs adopt a different approach and do not resort to such a fully
connected architecture. Instead, CNNs extract local features from images, which are
then fed to the subsequent layers.

CNNs rose to prominence in 2012 when an architecture called AlexNet won a premier
competition called the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). ILSVRC is a large-scale computer vision competition where teams from
around the globe compete for the prize of the best computer vision model. Through
the 2012 research paper titled ImageNet Classification with Deep Convolutional Neural
Networks (https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-
neural-networks), Alex Krizhevsky, et al. (University of Toronto) showcased the true
power of CNN architectures, which eventually won them the 2012 ILSVRC challenge.
The following figure depicts the structure of the AlexNet model, a CNN model whose
high performance catapulted CNNs to prominence in the deep learning domain.
While the structure of this model may look complicated to you, in Chapter 3, Image
Classification with Convolutional Neural Networks, the working of such CNN networks
will be explained to you in detail:

Figure 1.7: CNN architecture of the AlexNet model

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Introduction | 15

Note

The aforementioned diagram is sourced from the popular research paper:
Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet
Classification with Deep Convolutional Neural Networks. Neural Information
Processing Systems. 25. 10.1145/3065386.

Since 2012, there have been many breakthrough CNN architectures expanding the
possibilities for computer vision. Some of the prominent architectures are ZFNet,
Inception (GoogLeNet), VGG, and ResNet.

Some of the most prominent use cases where CNNs are put to use are as follows:

• Image recognition and optical character recognition (OCR)

• Face recognition on social media

• Text classification

• Object detection for self-driving cars

• Image analysis for health care

Another great benefit of working with deep learning is that you needn't always build
your models from scratch – you could use models built by others and use them
for your own applications. This is known as "transfer learning", and it allows you to
benefit from the active deep learning community.

We will apply transfer learning to image processing and learn about CNNs and their
dynamics in detail in Chapter 3, Image Classification with Convolutional Neural Networks.

16 | Building Blocks of Deep Learning

Recurrent Neural Networks

In traditional neural networks, the inputs are independent of the outputs. However,
in cases such as language translation, where there is dependence on the words
preceding and succeeding a word, there is a need to understand the dynamics of the
sequences in which words appear. This problem was solved by a class of networks
called recurrent neural networks (RNNs). RNNs are a class of deep learning
networks where the output from the previous step is sent as input to the current
step. A distinct characteristic of an RNN is a hidden layer, which remembers the
information of other inputs in a sequence. A high-level representation of an RNN can
be seen in the following figure. You'll learn more about the inner workings of these
networks in Chapter 5, Deep Learning for Sequences:

Figure 1.8: Structure of RNNs

There are different types of RNN architecture. Some of the most prominent ones are
long short-term memory (LSTM) and gated recurrent units (GRU).

Some of the important use cases for RNNs are as follows:

• Language modeling and text generation

• Machine translation

• Speech recognition

• Generating image descriptions

Introduction | 17

RNNs will be covered in detail in Chapter 5, Deep Learning for Sequences, and Chapter 6,
LSTMs, GRUs, and Advanced RNNs.

Generative Adversarial Networks

Generative adversarial networks (GANs) are networks that are capable of
generating data distributions similar to any real data distributions. One of the
pioneers of deep learning, Yann LeCun, described GANs as one of the most promising
ideas in deep learning in the last decade.

To give you an example, suppose we want to generate images of dogs from
random noise data. For this, we train a GAN network with real images of dogs and
the noise data until we generate data that looks like the real images of dogs. The
following diagram explains the concept behind GANs. At this stage, you might not
fully understand this concept. It will be explained in detail in Chapter 7, Generative
Adversarial Networks.

Figure 1.9: Structure of GANs

Note

The aforementioned diagram is sourced from the popular research paper:
Barrios, Buldain, Comech, Gilbert & Orue (2019). Partial Discharge
Classification Using Deep Learning Methods—Survey of Recent Progress
(https://doi.org/10.3390/en12132485).

https://doi.org/10.3390/en12132485

18 | Building Blocks of Deep Learning

GANs are a big area of research, and there are many use cases for them. Some of the
useful applications of GANs are as follows:

• Image translation

• Text to image synthesis

• Generating videos

• The restoration of art

GANs will be covered in detail in Chapter 7, Generative Adversarial Networks.

The possibilities and promises of deep learning are huge. Deep learning applications
have become ubiquitous in our daily lives. Some notable examples are as follows:

• Chatbots

• Robots

• Smart speakers (such as Alexa)

• Virtual assistants

• Recommendation engines

• Drones

• Self-driving cars or autonomous vehicles

This ever-expanding canvas of possibilities makes it a great toolset in the arsenal of
a data scientist. This book will progressively introduce you to the amazing world of
deep learning and make you adept at applying it to real-world scenarios.

Introduction to TensorFlow
TensorFlow is a deep learning library developed by Google. At the time of writing this
book, TensorFlow is by far the most popular deep learning library. It was originally
developed by a team within Google called the Google Brain team for their internal
use and was subsequently open sourced in 2015. The Google Brain team has
developed popular applications such as Google Photos and Google Cloud Speech-to-
Text, which are deep learning applications based on TensorFlow. TensorFlow 1.0 was
released in 2017, and within a short period of time, it became the most popular deep
learning library ahead of other existing libraries, such as Caffe, Theano, and PyTorch.
It is considered the industry standard, and almost every organization that is doing
something in the deep learning space has adopted it. Some of the key features of
TensorFlow are as follows:

Introduction to TensorFlow | 19

• It can be used with all common programming languages, such as Python, Java,
and R

• It can be deployed on multiple platforms, including Android and Raspberry Pi

• It can run in a highly distributed mode and hence is highly scalable

After being in Alpha/Beta release for a long time, the final version of TensorFlow
2.0 was released on September 30, 2019. The focus of TF2.0 was to make the
development of deep learning applications easier. Let's go ahead and understand the
basics of the TensorFlow 2.0 framework.

Tensors

Inside the TensorFlow program, every data element is called a tensor. A tensor is a
representation of vectors and matrices in higher dimensions. The rank of a tensor
denotes its dimensions. Some of the common data forms represented as tensors are
as follows.

Scalar

A scalar is a tensor of rank 0, which only has magnitude.

For example, [12] is a scalar of magnitude 12.

Vector

A vector is a tensor of rank 1.

For example, [10 , 11, 12, 13].

Matrix

A matrix is a tensor of rank 2.

For example, [[10,11] , [12,13]]. This tensor has two rows and
two columns.

20 | Building Blocks of Deep Learning

Tensor of rank 3

This is a tensor in three dimensions. For example, image data is predominantly a
three-dimensional tensor with width, height, and the number of channels as its three
dimensions. The following is an example of a tensor with three dimensions, that is, it
has two rows, three columns, and three channels:

Figure 1.10: Tensor with three dimensions

The shape of a tensor is represented by an array and indicates the number of
elements in each dimension. For example, if the shape of a tensor is [2,3,5], it means
the tensor has three dimensions. If this were to be image data, this shape would
mean that this tensor has two rows, three columns, and five channels. We can also
get the rank from the shape. In this example, the rank of the tensor is three, since
there are three dimensions. This is further illustrated in the following diagram:

Introduction to TensorFlow | 21

Figure 1.11: Examples of Tensor rank and shape

Constants

Constants are used to store values that are not changed or modified during the
course of the program. There are multiple ways in which a constant can be created,
but the simplest way is as follows:

a = tf.constant (10)

22 | Building Blocks of Deep Learning

This creates a tensor initialized to 10. Keep in mind that a constant's value cannot be
updated or modified by reassigning a new value to it. Another example is as follows:

s = tf.constant("Hello")

In this line, we are instantiating a string as a constant.

Variables

A variable is used to store data that can be updated and modified during the course
of the program. We will look at this in more detail in Chapter 2, Neural Networks. There
are multiple ways of creating a variable, but the simplest way is as follows:

b=tf.Variable(20)

In the preceding code, the variable b is initialized to 20. Note that in TensorFlow,
unlike constants, the term Variable is written with an uppercase V.

A variable can be reassigned a different value during the course of the program.
Variables can be used to assign any type of object, including scalars, vectors, and
multi-dimensional arrays. The following is an example of how an array whose
dimensions are 3 x 3 can be created in TensorFlow:

C = tf.Variable([[1,2,3],[4,5,6],[7,8,9]])

This variable can be initialized to a 3 x 3 matrix, as follows:

Figure 1.12: 3 x 3 matrix

Now that we know some of the basic concepts of TensorFlow, let's learn how to put
them into practice.

Introduction to TensorFlow | 23

Defining Functions in TensorFlow

A function can be created in Python using the following syntax:

def myfunc(x,y,c):

 Z=x*x*y+y+c

 return Z

A function is initiated using the special operator def, followed by the name of the
function, myfunc, and the arguments for the function. In the preceding example, the
body of the function is in the second line, and the last line returns the output.

In the following exercise, we will learn how to implement a small function using the
variables and constants we defined earlier.

Exercise 1.02: Implementing a Mathematical Equation

In this exercise, we will solve the following mathematical equation using TensorFlow:

Figure 1.13: Mathematical equation to be solved using TensorFlow

We will use TensorFlow to solve it, as follows:

X=3

Y=4

While there are multiple ways of doing this, we will only explore one of the ways in
this exercise. Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and rename it Exercise 1.02.

2. Import the TensorFlow library using the following command:

import tensorflow as tf

3. Now, let's solve the equation. For that, you will need to create two variables, X
and Y, and initialize them to the given values of 3 and 4, respectively:

X=tf.Variable(3)

Y=tf.Variable(4)

24 | Building Blocks of Deep Learning

4. In our equation, the value of 2 isn't changing, so we'll store it as a constant by
typing the following code:

C=tf.constant(2)

5. Define the function that will solve our equation:

def myfunc(x,y,c):

 Z=x*x*y+y+c

 return Z

6. Call the function by passing X, Y, and C as parameters. We'll be storing the
output of this function in a variable called result:

result=myfunc(X,Y,C)

7. Print the result using the tf.print() function:

tf.print(result)

The output will be as follows:

42

Note

To access the source code for this specific section, please refer
to https://packt.live/2ClXKjj.

You can also run this example online at https://packt.live/2ZOIN1C.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we learned how to define and use a function. Those familiar with
Python programming will notice that it is not a lot different from normal Python code.

In the rest of this chapter, we will prepare ourselves by looking at some basic linear
algebra and familiarize ourselves with some of the common vector operations, so
that understanding neural networks in the next chapter will be much easier.

https://packt.live/2ClXKjj
https://packt.live/2ZOIN1C

Introduction to TensorFlow | 25

Linear Algebra with TensorFlow

The most important linear algebra topic that will be used in neural networks is
matrix multiplication. In this section, we will explain how matrix multiplication works
and then use TensorFlow's built-in functions to solve some matrix multiplication
examples. This is essential in preparation for neural networks in the next chapter.

How does matrix multiplication work? You might have studied this as part of high
school, but let's do a quick recap.

Let's say we have to perform a matrix multiplication between two matrices, A and B,
where we have the following:

Figure 1.14: Matrix A

Figure 1.15: Matrix B

The first step would be to check whether multiplying a 2 x 3 matrix by a 3 x 2 matrix is
possible. There is a prerequisite for matrix multiplication. Remember that C=R, that is,
the number of columns (C) in the first matrix should be equal to the number of rows
(R) in the second matrix. And remember the sequence matters here, and that's why, A
x B is not equal to B x A. In this example, C=3 and R=3. So, multiplication is possible.

26 | Building Blocks of Deep Learning

The resultant matrix would have the number of rows equal to that in A and the
number of columns equal to that in B. So, in this case, the result would be a
2 x 2 matrix.

To begin multiplying the two matrices, take the elements of the first row of A (R1) and
the elements of the first column of B (C1):

Figure 1.16: Matrix A(R1)

Figure 1.17: Matrix B(C1)

Get the sum of the element-wise products, that is, (1 x 7) + (2 x 9) + (3 x 11) = 58. This
will be the first element in the resultant 2 x 2 matrix. We'll call this incomplete matrix
D(i) for now:

Figure 1.18: Incomplete matrix D(i)

Repeat this with the first row of A(R1) and the second column of B (C2):

Figure 1.19: First row of matrix A

Figure 1.20: Second column of matrix B

Introduction to TensorFlow | 27

Get the sum of the products of the corresponding elements, that is, (1 x 8) + (2 x 10) +
(3 x 12) = 64. This will be the second element in the resultant matrix:

Figure 1.21: Second element of matrix D(i)

Repeat the same with the second row to get the final result:

Figure 1.22: Matrix D

The same matrix multiplication can be performed in TensorFlow using a built-in
method called tf.matmul(). The matrices that need to be multiplied must be
supplied to the model as variables, as shown in the following example:

C = tf.matmul(A,B)

In the preceding case, A and B are the matrices that we want to multiply. Let's
practice this method by using TensorFlow to multiply the two matrices we
multiplied manually.

Exercise 1.03: Matrix Multiplication Using TensorFlow

In this exercise, we will use the tf.matmul() method to multiply two matrices
using tensorflow. Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and rename it Exercise 1.03.

2. Import the tensorflow library and create two variables, X and Y, as matrices.
X is a 2 x 3 matrix and Y is a 3 x 2 matrix:

import tensorflow as tf

X=tf.Variable([[1,2,3],[4,5,6]])

Y=tf.Variable([[7,8],[9,10],[11,12]])

3. Print and display the values of X and Y to make sure the matrices are created
correctly. We'll start by printing the value of X:

tf.print(X)

28 | Building Blocks of Deep Learning

The output will be as follows:

[[1 2 3]

 [4 5 6]]

Now, let's print the value of Y:

tf.print(Y)

The output will be as follows:

[[7 8]

 [9 10]

 [11 12]]

4. Perform matrix multiplication by calling the TensorFlow tf.matmul() function:

c1=tf.matmul(X,Y)

To display the result, print the value of c1:

tf.print(c1)

The output will be as follows:

[[58 64]

 [139 154]]

5. Let's perform matrix multiplication by changing the order of the matrices:

c2=tf.matmul(Y,X)

To display the result, let's print the value of c2:

tf.print(c2)

The resulting output will be as follows.

[[39 54 69]

 [49 68 87]

 [59 82 105]]

Introduction to TensorFlow | 29

Note that the results are different since we changed the order.

Note

To access the source code for this specific section, please refer
to https://packt.live/3eevyw4.

You can also run this example online at https://packt.live/2CfGGvE.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we learned how to create matrices in TensorFlow and how to
perform matrix multiplication. This will come in handy when we create our own
neural networks.

The reshape Function

Reshape, as the name suggests, changes the shape of a tensor from its current shape
to a new shape. For example, you can reshape a 2 × 3 matrix to a 3 × 2 matrix, as
shown here:

Figure 1.23: Reshaped matrix

Let's consider the following 2 × 3 matrix, which we defined as follows in the
previous exercise:

X=tf.Variable([[1,2,3],[4,5,6]])

We can print the shape of the matrix using the following code:

X.shape

https://packt.live/3eevyw4
https://packt.live/2CfGGvE

30 | Building Blocks of Deep Learning

From the following output, we can see the shape, which we already know:

TensorShape([2, 3])

Now, to reshape X into a 3 × 2 matrix, TensorFlow provides a handy function called
tf.reshape(). The function is implemented with the following arguments:

tf.reshape(X,[3,2])

In the preceding code, X is the matrix that needs to be reshaped, and [3,2] is the
new shape that the X matrix has to be reshaped to.

Reshaping matrices is a handy operation when implementing neural networks. For
example, a prerequisite when working with images using CNNs is that the image has
to be of rank 3, that is, it has to have three dimensions: width, height, and depth. If
our image is a grayscale image that has only two dimensions, the reshape operation
will come in handy to add a third dimension. In this case, the third dimension will
be 1:

Figure 1.24: Changing the dimension using reshape()

In the preceding figure, we are reshaping a matrix of shape [5,4] to a matrix of
shape [5,4,1]. In the exercise that follows, we will be using the reshape()
function to reshape a [5,4] matrix.

There are some important considerations when implementing the
reshape() function:

• The total number of elements in the new shape should be equal to the total
number of elements in the original shape. For example, you can reshape a 2 ×
3 matrix (a total of 6 elements) to a 3 × 2 matrix since the new shape also has 6
elements. However, you cannot reshape it to 3 × 3 or 3 × 4.

• The reshape() function should not be confused with transpose(). In
reshape(), the sequence of the elements of the matrix is retained and the
elements are rearranged in the new shape in the same sequence. However, in
the case of transpose(), the rows become columns and the columns become
rows. Hence the sequence of the elements will change.

Introduction to TensorFlow | 31

• The reshape() function will not change the original matrix unless you assign
the new shape to it. Otherwise, it simply displays the new shape without actually
changing the original variable. For example, let's say x has shape [2,3] and you
simply run tf.reshape(x,[3,2]). When you check the shape of x again, it
will remain as [2,3]. In order to actually change the shape, you need to assign the
new shape to it, like this:

x=tf.reshape(x,[3,2])

Let's try implementing reshape() in TensorFlow in the exercise that follows.

Exercise 1.04: Reshaping Matrices Using the reshape() Function in TensorFlow

In this exercise, we will reshape a [5,4] matrix into the shape of [5,4,1] using the
reshape() function. This exercise will help us understand how reshape() can be
used to change the rank of a tensor. Follow these steps to complete this exercise:

1. Open a Jupyter Notebook and rename it Exercise 1.04. Then, import
tensorflow and create the matrix we want to reshape:

import tensorflow as tf

A=tf.Variable([[1,2,3,4], \

 [5,6,7,8], \

 [9,10,11,12], \

 [13,14,15,16], \

 [17,18,19,20]])

2. First, we'll print the variable A to check whether it is created correctly, using the
following command:

tf.print(A)

The output will be as follows:

[[1 2 3 4]

 [5 6 7 8]

 [9 10 11 12]

 [13 14 15 16]

 [17 18 19 20]]

32 | Building Blocks of Deep Learning

3. Let's print the shape of A, just to be sure:

A.shape

The output will be as follows:

TensorShape([5, 4])

Currently, it has a rank of 2. We'll be using the reshape() function to change
its rank to 3.

4. Now, we will reshape A to the shape [5,4,1] using the following command. We've
thrown in the print command just to see what the output looks like:

tf.print(tf.reshape(A,[5,4,1]))

We'll get the following output:

[[[1]

 [2]

 [3]

 [4]]

 [[5]

 [6]

 [7]

 [8]]

 [[9]

 [10]

 [11]

 [12]]

 [[13]

 [14]

 [15]

 [16]]

 [[17]

 [18]

 [19]

 [20]]]

That worked as expected.

Introduction to TensorFlow | 33

5. Let's see the new shape of A:

A.shape

The output will be as follows:

TensorShape([5, 4])

We can see that A still has the same shape. Remember that we discussed that
in order to save the new shape, we need to assign it to itself. Let's do that in the
next step.

6. Here, we'll assign the new shape to A:

A = tf.reshape(A,[5,4,1])

7. Let's check the new shape of A once again:

A.shape

We will see the following output:

TensorShape([5, 4, 1])

With that, we have not just reshaped the matrix but also changed its rank from 2
to 3. In the next step, let's print out the contents of A just to be sure.

8. Let's see what A contains now:

tf.print(A)

The output, as expected, will be as follows:

[[[1]

 [2]

 [3]

 [4]]

 [[5]

 [6]

 [7]

 [8]]

 [[9]

 [10]

 [11]

 [12]]

34 | Building Blocks of Deep Learning

 [[13]

 [14]

 [15]

 [16]]

 [[17]

 [18]

 [19]

 [20]]]

Note

To access the source code for this specific section, please refer
to https://packt.live/3gHvyGQ.

You can also run this example online at https://packt.live/2ZdjdUY.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how to use the reshape() function. Using reshape(), we
can change the rank and shape of tensors. We also learned that reshaping a matrix
changes the shape of the matrix without changing the order of the elements within
the matrix. Another important thing that we learned was that the reshape dimension
has to align with the number of elements in the matrix. Having learned about the
reshape function, we will go ahead and learn about the next function, which
is Argmax.

The argmax Function

Now, let's understand the argmax function, which is frequently used in neural
networks. Argmax returns the position of the maximum value along a particular axis
in a matrix or tensor. It must be noted that it does not return the maximum value, but
rather the index position of the maximum value.

For example, if x = [1,10,3,5], then tf.argmax(x) will return 1 since the
maximum value (which in this case is 10) is in the index position 1.

https://packt.live/3gHvyGQ
https://packt.live/2ZdjdUY

Introduction to TensorFlow | 35

Note

In Python, the index starts with 0. So, considering the preceding example of
x, the element 1 will have an index of 0, 10 will have an index of 1, and
so on.

Now, let's say we have the following:

Figure 1.25: An example matrix

In this case, argmax has to be used with the axis parameter. When axis equals
0, it returns the position of the maximum value in each column, as shown in the
following figure:

Figure 1.26: The argmax operation along axis 0

As you can see, the maximum value in the first column is 9, so the index, in this case,
will be 2. Similarly, if we move along to the second column, the maximum value is 5,
which has an index of 0. In the third column, the maximum value is 8, and hence the
index is 1. If we were to run the argmax function on the preceding matrix with the
axis as 0, we would get the following output:

[2,0,1]

36 | Building Blocks of Deep Learning

When axis = 1, argmax returns the position of the maximum value across each
row, like this:

Figure 1.27: The argmax operation along axis 1

Moving along the rows, we have 5 at index 1, 8 at index 2, and 9 at index 0. If we were
to run the argmax function on the preceding matrix with the axis as 1, we would get
the following output:

[1,2,0]

With that, let's try and implement argmax on a matrix.

Exercise 1.05: Implementing the argmax() Function

In this exercise, we are going to use the argmax function to find the position of the
maximum value in a given matrix along axes 0 and 1. Follow these steps to complete
this exercise:

1. Import tensorflow and create the following matrix:

import tensorflow as tf

X=tf.Variable([[91,12,15], [11,88,21],[90, 87,75]])

2. Let's print X and see what the matrix looks like:

tf.print(X)

The output will be as follows:

[[91 12 15]

 [11 88 21]

 [90 87 75]]

Introduction to TensorFlow | 37

3. Print the shape of X:

X.shape

The output will be as follows:

TensorShape([3, 3])

4. Now, let's use argmax to find the positions of the maximum values while
keeping axis as 0:

tf.print(tf.argmax(X,axis=0))

The output will be as follows:

[0 1 2]

Referring to the matrix in Step 2, we can see that, moving across the columns,
the index of the maximum value (91) in the first column is 0. Similarly, the
index of the maximum value along the second column (88) is 1. And finally, the
maximum value across the third column (75) has index 2. Hence, we have the
aforementioned output.

5. Now, let's change the axis to 1:

tf.print(tf.argmax(X,axis=1))

The output will be as follows:

[0 1 0]

Again, referring to the matrix in Step 2, if we move along the rows, the maximum
value along the first row is 91, which is at index 0. Similarly, the maximum value along
the second row is 88, which is at index 1. Finally, the third row is at index 0 again, with
a maximum value of 75.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZR5q5p.

You can also run this example online at https://packt.live/3eewhNO.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2ZR5q5p
https://packt.live/3eewhNO

38 | Building Blocks of Deep Learning

In this exercise, we learned how to use the argmax function to find the position of
the maximum value along a given axis of a tensor. This will be used in the subsequent
chapters when we perform classification using neural networks.

Optimizers

Before we look at neural networks, let's learn about one more important concept,
and that is optimizers. Optimizers are extensively used for training neural networks,
so it is important to understand their application. In this chapter, let's get a basic
introduction to the concept of an optimizer. As you might already be aware, the
purpose of machine learning is to find a function (along with its parameters) that
maps inputs to outputs.

For example, let's say the original function of a data distribution is a linear function
(linear regression) of the following form:

Y = mX + b

Here, Y is the dependent variable (label), X the independent variable (features), and m
and b are the parameters of the model. Solving this problem with machine learning
would entail learning the parameters m and b and thereby the form of the function
that connects X to Y. Once the parameters have been learned, if we are given a
new value for X, we can calculate or predict the value of Y. It is in learning these
parameters that optimizers come into play. The learning process entails the
following steps:

1. Assume some arbitrary random values for the parameters m and b.

2. With these assumed parameters, for a given dataset, estimate the values of Y for
each X variable.

3. Find the difference between the predicted value of Y and the actual value of Y
associated with the X variable. This difference is called the loss function or cost
function. The magnitude of loss will depend on the parameter values we initially
assumed. If the assumptions were way off the actual values, then the loss will be
high. The way to get toward the right parameter is by changing or altering the
initial assumed values of the parameters in such a way that the loss function is
minimized. This task of changing the values of the parameters to reduce the loss
function is called optimization.

Introduction to TensorFlow | 39

There are different types of optimizers that are used in deep learning. Some of the
most popular ones are stochastic gradient descent, Adam, and RMSprop. The detailed
functionality and the internal workings of optimizers will be described in Chapter 2,
Neural Networks, but here, we will see how they are applied in solving certain common
problems, such as simple linear regression. In this chapter, we will be using an
optimizer called Adam, which is a very popular optimizer. We can define the Adam
optimizer in TensorFlow using the following code:

tf.optimizers.Adam()

Once an optimizer has been defined, we can use it to minimize the loss using the
following code:

optimizer.minimize(loss,[m,b])

The terms [m,b] are the parameters that will be changed during the optimization
process. Now, let's use an optimizer to train a simple linear regression model
using TensorFlow.

Exercise 1.06: Using an Optimizer for a Simple Linear Regression

In this exercise, we are going to see how to use an optimizer to train a simple linear
regression model. We will start off by assuming arbitrary values for the parameters
(w and b) in a linear equation w*x + b. Using the optimizer, we will observe how the
values of the parameters change to get to the right parameter values, thus mapping
the relationship between the input values (x) and output (y). Using the optimized
parameter values, we will predict the output (y) for some given input values (x). After
completing this exercise, we will see that the linear output, which is predicted by the
optimized parameters, is very close to the real values of the output values. Follow
these steps to complete this exercise:

1. Open a Jupyter Notebook and rename it Exercise 1.06.

2. Import tensorflow, create the variables, and initialize them to 0. Here, our
assumed values are zero for both these parameters:

import tensorflow as tf

w=tf.Variable(0.0)

b=tf.Variable(0.0)

40 | Building Blocks of Deep Learning

3. Define a function for the linear regression model. We learned how to create
functions in TensorFlow earlier:

def regression(x):

 model=w*x+b

 return model

4. Prepare the data in the form of features (x) and labels (y):

x=[1,2,3,4]

y=[0,-1,-2,-3]

5. Define the loss function. In this case, this is the absolute value of the difference
between the predicted value and the label:

loss=lambda:abs(regression(x)-y)

6. Create an Adam optimizer instance with a learning rate of .01. The learning rate
defines at what rate the optimizer should change the assumed parameters. We
will discuss the learning rate in subsequent chapters:

optimizer=tf.optimizers.Adam(.01)

7. Train the model by running the optimizer for 1,000 iterations to minimize
the loss:

for i in range(1000):

 optimizer.minimize(loss,[w,b])

8. Print the trained values of the w and b parameters:

tf.print(w,b)

The output will be as follows:

-1.00371706 0.999803364

Introduction to TensorFlow | 41

We can see that the values of the w and b parameters have been changed from
their original values of 0, which were assumed. This is what is done during the
optimizing process. These updated parameter values will be used for predicting
the values of Y.

Note

The optimization process is stochastic in nature (having a random
probability distribution), and you might get values for w and b that are
different to the value that was printed here.

9. Use the trained model to predict the output by passing in the x values. The
model predicts the values, which are very close to the label values (y), which
means the model was trained to a high level of accuracy:

tf.print(regression([1,2,3,4]))

The output of the preceding command will be as follows:

[-0.00391370058 -1.00763083 -2.01134801 -3.01506495]

Note

To access the source code for this specific section, please refer
to https://packt.live/3gSBs8b.

You can also run this example online at https://packt.live/2OaFs7C.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how to use an optimizer to train a simple linear regression
model. During this exercise, we saw how the initially assumed values of the
parameters were updated to get the true values. Using the true values of the
parameters, we were able to get the predictions close to the actual values.
Understanding how to apply the optimizer will help you later with training neural
network models.

Now that we have seen the use of an optimizer, let's take what we've learned and
apply the optimization function to solve a quadratic equation in the next activity.

https://packt.live/3gSBs8b
https://packt.live/2OaFs7C

42 | Building Blocks of Deep Learning

Activity 1.01: Solving a Quadratic Equation Using an Optimizer

In this activity, you will use an optimizer to solve the following quadratic equation:

Figure 1.28: A quadratic equation

Here are the high-level steps you need to follow to complete this activity:

1. Open a new Jupyter Notebook and import the necessary packages, just as we did
in the previous exercises.

2. Initialize the variable. Please note that, in this example, x is the variable that you
will need to initialize. You can initialize it to a value of 0.

3. Construct the loss function using the lambda function. The loss function will
be the quadratic equation that you are trying to solve.

4. Use the Adam optimizer with a learning rate of .01.

5. Run the optimizer for different iterations and minimize the loss. You can start
the number of iterations at 1,000 and then increase it in subsequent trials until
you get the result you desire.

6. Print the optimized value of x.

The expected output is as follows:

4.99919891

Please note that while your actual output might be a little different, it should be a
value close to 5.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 388.

Summary | 43

Summary
That brings us to the end of this chapter. Let's revisit what we have learned so far.
We started off by looking at the relationship between AI, machine learning, and deep
learning. Then, we implemented a demo of deep learning by classifying an image and
then implementing a text to speech conversion using a Google API. This was followed
by a brief description of different use cases and types of deep learning, such as MLP,
CNN, RNN, and GANs.

In the next section, we were introduced to the TensorFlow framework and
understood some of the basic building blocks, such as tensors and their rank and
shape. We also implemented different linear algebra operations using TensorFlow,
such as matrix multiplication. Later in the chapter, we performed some useful
operations such as reshape and argmax. Finally, we were introduced to the
concept of optimizers and implemented solutions for mathematical expressions
using optimizers.

Now that we have laid the foundations for deep learning and introduced you to the
TensorFlow framework, the stage has been set for you to take a deep dive into the
fascinating world of neural networks. In the next chapter, you will be introduced to
neural networks, and in the successive chapters, we will take a look at more in-depth
deep learning concepts. We hope you enjoy this fascinating journey.

Overview

This chapter starts with an introduction to biological neurons; we see how
an artificial neural network is inspired by biological neural networks. We will
examine the structure and inner workings of a simple single-layer neuron
called a perceptron and learn how to implement it in TensorFlow. We will
move on to building multilayer neural networks to solve more complex
multiclass classification tasks and discuss the practical considerations of
designing a neural network. As we build deep neural networks, we will move
on to Keras to build modular and easy-to-customize neural network models
in Python. By the end of this chapter, you'll be adept at building neural
networks to solve complex problems.

Neural Networks

2

46 | Neural Networks

Introduction
In the previous chapter, we learned how to implement basic mathematical concepts
such as quadratic equations, linear algebra, and matrix multiplication in TensorFlow.
Now that we have learned the basics, let's dive into Artificial Neural Networks
(ANNs), which are central to artificial intelligence and deep learning.

Deep learning is a subset of machine learning. In supervised learning, we often use
traditional machine learning techniques, such as support vector machines or tree-
based models, where features are explicitly engineered by humans. However, in
deep learning, the model explores and identifies the important features of a labeled
dataset without human intervention. ANNs, inspired by biological neurons, have
a layered representation, which helps them learn labels incrementally—from the
minute details to the complex ones. Consider the example of image recognition: in
a given image, an ANN would just as easily identify basic details such as light and
dark areas as it would identify more complex structures such as shapes. Though
neural network techniques are tremendously successful at tasks such as identifying
objects in images, how they do so is a black box, as the features are learned implicitly.
Deep learning techniques have turned out to be powerful at tackling very complex
problems, such as speech/image recognition, and hence are used across industry in
building self-driving cars, Google Now, and many more applications.

Now that we know the importance of deep learning techniques, we will take a
pragmatic step-by-step approach to understanding a mix of theory and practical
considerations in building deep-learning-based solutions. We will start with the
smallest component of a neural network, which is an artificial neuron, also referred
to as a perceptron, and incrementally increase the complexity to explore Multi-Layer
Perceptrons (MLPs) and advanced models such as Recurrent Neural Networks
(RNNs) and Convolutional Neural Networks (CNNs).

Neural Networks and the Structure of Perceptrons | 47

Neural Networks and the Structure of Perceptrons
A neuron is a basic building block of the human nervous system, which relays electric
signals across the body. The human brain consists of billions of interconnected
biological neurons, and they are constantly communicating with each other by
sending minute electrical binary signals by turning themselves on or off. The general
meaning of a neural network is a network of interconnected neurons. In the current
context, we are referring to ANNs, which are actually modeled on a biological
neural network. The term artificial intelligence is derived from the fact that natural
intelligence exists in the human brain (or any brain for that matter), and we humans
are trying to simulate this natural intelligence artificially. Though ANNs are inspired by
biological neurons, some of the advanced neural network architectures, such as CNNs
and RNNs, do not actually mimic the behavior of a biological neuron. However, for
ease of understanding, we will begin by drawing an analogy between the biological
neuron and an artificial neuron (perceptron).

A simplified version of a biological neuron is represented in Figure 2.1:

Figure 2.1: Biological neuron

48 | Neural Networks

This is a highly simplified representation. There are three main components:

• The dendrites, which receive the input signals

• The cell body, where the signal is processed in some form

• The tail-like axon, through which the neuron transfers the signal out to the
next neuron

A perceptron can also be represented in a similar way, although it is not a physical
entity but a mathematical model. Figure 2.2 shows a high-level representation of an
artificial neuron:

Figure 2.2: Representation of an artificial neuron

In an artificial neuron, as in a biological one, there is an input signal. The central node
conflates all the signals and fires the output signal if it is above a certain threshold. A
more detailed representation of a perceptron is shown in Figure 2.3. Each component
of this perceptron is explained in the sections that follow:

Neural Networks and the Structure of Perceptrons | 49

Figure 2.3: Representation of a perceptron

A perceptron has the following components:

• Input layer

• Weights

• Bias

• Net input function

• Activation function

Let's look at these components and their TensorFlow implementations in detail by
considering an OR table dataset.

Input Layer

Each example of input data is fed through the input layer. Referring to the
representation shown in Figure 2.3, depending on the size of the input example, the
number of nodes will vary from x1 to xm. The input data can be structured data (such
as a CSV file) or unstructured data, such as an image. These inputs, x1 to xm, are called
features (m refers to the number of features). Let's illustrate this with an example.

50 | Neural Networks

Let's say the data is in the form of a table as follows:

Figure 2.4: Sample input and output data – OR table

Here, the inputs to the neuron are the columns x1 and x2, which correspond to one
row. At this point, it may be difficult to comprehend, but for now, accept it that the
data is fed one row at a time in an iterative manner during training. We will represent
the input data and the true labels (output y) with the TensorFlow Variable class
as follows:

X = tf.Variable([[0.,0.],[0.,1.],\

 [1.,0.],[1.,1.]], \

 tf.float32)

y = tf.Variable([0, 1, 1, 1], tf.float32)

Weights

Weights are associated with each neuron, and the input features dictate how much
influence each of the input features should have in computing the next node. Each
neuron will be connected to all the input features. In the example, since there were
two inputs (x1 and x2) and the input layer is connected to one neuron, there will be
two weights associated with it: w1 and w2. A weight is a real number; it can be positive
or negative and is mathematically represented as R. When we say that a neural
network is learning, what is happening is that the network is adjusting its weights and
biases to get the correct predictions by adjusting to the error feedback. We will see
this in more detail in the sections that follow. For now, we will initialize the weights as
zeros and use the same TensorFlow Variable class as follows:

number_of_features = x.shape[1]

number_of_units = 1

Weight = tf.Variable(tf.zeros([number_of_features, \

 number_of_units]), \

 tf.float32)

Neural Networks and the Structure of Perceptrons | 51

Weights would be of the following dimension: number of input features × output size.

Bias

In Figure 2.3, bias is represented by b, which is called additive bias. Every neuron has
one bias. When x is zero, that is, no information is coming from the independent
variables, then the output should be biased to just b. Like the weights, the
bias also a real number, and the network has to learn the bias value to get the
correct predictions.

In TensorFlow, bias is the same size as the output size and can be represented
as follows:

B = tf.Variable(tf.zeros([1, 1]), tf.float32)

Net Input Function

The net input function, also commonly referred to as the input function, can be
described as the sum of the products of the inputs and their corresponding weights
plus the bias. Mathematically, it is represented as follows:

Figure 2.5: Net input function in mathematical form

Here:

• xi: input data—x1 to xm

• wi: weights—w1 to wm

• b: additive bias

As you can see, this formula involves inputs and their associated weights and biases.
This can be written in vectorized form, and we can use matrix multiplication, which
we learned about in Chapter 1, Building Blocks of Deep Learning. We will see this when
we start the code demo. Since all the variables are numbers, the result of the net
input function is just a number, a real number. The net input function can be easily
implemented using the TensorFlow matmul functionality as follows:

z = tf.add(tf.matmul(X, W), B)

52 | Neural Networks

W stands for weight, X stands for input, and B stands for bias.

Activation Function (G)

The output of the net input function (z) is fed as input to the activation function.
The activation function squashes the output of the net input function (z) into a new
output range depending on the choice of activation function. There are a variety
of activation functions, such as sigmoid (logistic), ReLU, and tanh. Each activation
function has its own pros and cons. We will take a deep dive into activation functions
later in the chapter. For now, we will start with a sigmoid activation function, also
known as a logistic function. With the sigmoid activation function, the linear output
z is squashed into a new output range of (0,1). The activation function provides
non-linearity between layers, which gives neural networks the ability to approximate
any continuous function.

The mathematical equation of the sigmoid function is as follows, where G(z) is the
sigmoid function and the right-hand equation details the derivative with respect to z:

Figure 2.6: Mathematical form of the sigmoid function

As you can see in Figure 2.7, the sigmoid function is a more or less S-shaped curve
with values between 0 and 1, no matter what the input is:

Figure 2.7: Sigmoid curve

Neural Networks and the Structure of Perceptrons | 53

And if we set a threshold (say 0.5), we can convert this into a binary output. Any
output greater than or equal to .5 is considered 1, and any value less than .5 is
considered 0.

Activation functions such as sigmoid are provided out of the box in TensorFlow. A
sigmoid function can be implemented in TensorFlow as follows:

output = tf.sigmoid(z)

Now that we have seen the structure of a perceptron and its code representation in
TensorFlow, let's put all the components together to make a perceptron.

Perceptrons in TensorFlow

In TensorFlow, a perceptron can be implemented just by defining a simple function,
as follows:

def perceptron(X):

 z = tf.add(tf.matmul(X, W), B)

 output = tf.sigmoid(z)

 return output

At a very high level, we can see that the input data passes through the net input
function. The output of the net input function is passed to the activation function,
which, in turn, gives us the predicted output. Now, let's look at each line of the code:

z = tf.add(tf.matmul(X, W), B)

The output of the net input function is stored in z. Let's see how we got that result
by breaking it down further into two parts, that is, the matrix multiplication part
contained in tf.matmul and the addition contained in tf.add.

Let's say we're storing the result of the matrix multiplication of X and W in a
variable called m:

m = tf.matmul(X, W)

54 | Neural Networks

Now, let's consider how we got that result. For example, let's say X is a row matrix,
like [X1 X2], and W is a column matrix, as follows:

Figure 2.8: Column matrix

Recall from the previous chapter that tf.matmul will perform matrix multiplication.
So, the result is this:

m = x1*w1 + x2*w2

And then, we add the output, m, to the bias, B, as follows:

z = tf.add(m, B)

Note that what we do in the preceding step is the same as the mere addition of the
two variables m and b:

m + b

Hence, the final output is:

z = x1*w1 + x2*w2 + b

z would be the output of the net input function.

Now, let's consider the next line:

output= tf.sigmoid(z)

As we learned earlier, tf.sigmoid is a readily available implementation of the
sigmoid function. The net input function's output (z) computed in the previous line
is fed as input to the sigmoid function. The result of the sigmoid function is the
output of the perceptron, which is in the range of 0 to 1. During training, which will be
explained later in the chapter, we will feed the data in batches to this function, which
will calculate the predicted values.

Neural Networks and the Structure of Perceptrons | 55

Exercise 2.01: Perceptron Implementation

In this exercise, we will implement the perceptron in TensorFlow for an OR table. Let's
set the input data in TensorFlow and freeze the design parameters of perceptron:

1. Let's import the necessary package, which, in our case, is tensorflow:

import tensorflow as tf

2. Set the input data and labels of the OR table data in TensorFlow:

X = tf.Variable([[0.,0.],[0.,1.],\

 [1.,0.],[1.,1.]], \

 dtype=tf.float32)

print(X)

As you can see in the output, we will have a 4 × 2 matrix of input data:

<tf.Variable 'Variable:0' shape=(4, 2) dtype=float32,

numpy=array([[0., 0.],

 [0., 1.],

 [1., 0.],

 [1., 1.]], dtype=float32)>

3. We will set the actual labels in TensorFlow and use the reshape() function to
reshape the y vector into a 4 × 1 matrix:

y = tf.Variable([0, 1, 1, 1], dtype=tf.float32)

y = tf.reshape(y, [4,1])

print(y)

The output is a 4 × 1 matrix, as follows:

tf.Tensor(

[[0.]

 [1.]

 [1.]

 [1.]], shape=(4, 1), dtype=float32)

56 | Neural Networks

4. Now let's design parameters of a perceptron.

Number of neurons (units) = 1

Number of features (inputs) = 2 (number of examples × number of features)

The activation function will be the sigmoid function, since we are doing
binary classification:

NUM_FEATURES = X.shape[1]

OUTPUT_SIZE = 1

In the preceding code, X.shape[1] will equal 2 (since the indices start with
zero, 1 refers to the second index, which is 2).

5. Define the connections weight matrix in TensorFlow:

W = tf.Variable(tf.zeros([NUM_FEATURES, \

 OUTPUT_SIZE]), \

 dtype=tf.float32)

print(W)

The weight matrix would essentially be a columnar matrix as shown in the
following figure. It will have the following dimension: number of features (columns)
× output size:

Figure 2.9: A columnar matrix

The output size will be dependent on the number of neurons—in this case, it is
1. So, if you are developing a layer of 10 neurons with two features, the shape of
this matrix will be [2,10]. The tf.zeros function creates a tensor with the given
shape and initializes all the elements to zeros.

So, this will result in a zero columnar matrix like this:

<tf.Variable 'Variable:0' shape=(2, 1) dtype=float32, \

numpy=array([[0.], [0.]], dtype=float32)>

6. Now create the variable for the bias:

B = tf.Variable(tf.zeros([OUTPUT_SIZE, 1]), dtype=tf.float32)

print(B)

Neural Networks and the Structure of Perceptrons | 57

There is only one bias per neuron, so in this case, the bias is just one number
in the form of a single-element array. However, if we had a layer of 10 neurons,
then it would be an array of 10 numbers—1 for each neuron.

This will result in a 0-row matrix with a single element like this:

<tf.Variable 'Variable:0' shape=(1, 1) dtype=float32,

numpy=array([[0.]], dtype=float32)>

7. Now that we have the weights and bias, the next step is to perform the
computation to get the net input function, feed it to the activation function,
and then get the final output. Let's define a function called perceptron to get
the output:

def perceptron(X):

 z = tf.add(tf.matmul(X, W), B)

 output = tf.sigmoid(z)

 return output

print(perceptron(X))

The output will be a 4 × 1 array that contains the predictions by our perceptron:

tf.Tensor(

[[0.5]

 [0.5]

 [0.5]

 [0.5]], shape=(4, 1), dtype=float32)

As we can see, the predictions are not quite accurate. We will learn how to
improve the results in the sections that follow.

Note

To access the source code for this specific section, please refer
to https://packt.live/3feF7MO.

You can also run this example online at https://packt.live/2CkMiEE.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3feF7MO
https://packt.live/2CkMiEE

58 | Neural Networks

In this exercise, we implemented a perceptron, which is a mathematical
implementation of a single artificial neuron. Keep in mind that it is just the
implementation of the model; we have not done any training. In the next section,
we will see how to train the perceptron.

Training a Perceptron
To train a perceptron, we need the following components:

• Data representation

• Layers

• Neural network representation

• Loss function

• Optimizer

• Training loop

In the previous section, we covered most of the preceding components: the data
representation of the input data and the true labels in TensorFlow. For layers, we
have the linear layer and the activation functions, which we saw in the form of the
net input function and the sigmoid function respectively. For the neural network
representation, we made a function called perceptron(), which uses a linear
layer and a sigmoid layer to perform predictions. What we did in the previous section
using input data and initial weights and biases is called forward propagation.
The actual neural network training involves two stages: forward propagation and
backward propagation. We will explore them in detail in the next few steps. Let's look
at the training process at a higher level:

• A training iteration where the neural network goes through all the training
examples is called an Epoch. This is one of the hyperparameters to be tweaked
in order to train a neural network.

• In each pass, a neural network does forward propagation, where data travels
from the input to the output. As seen in Exercise 2.01, Perceptron Implementation,
inputs are fed to the perceptron. Input data passes through the net input
function and the activation function to produce the predicted output. The
predicted output is compared with the labels or the ground truth, and the error
or loss is calculated.

Training a Perceptron | 59

• In order to make a neural network learn, learning being the adjustment of
weights and biases in order to make correct predictions, there needs to be a
loss function, which will calculate the error between an actual label and the
predicted label.

• To minimize the error in the neural network, the training loop needs an
optimizer, which will minimize the loss on the basis of a loss function.

• Once the error is calculated, the neural network then sees which nodes of the
network contributed to the error and by how much. This is essential in order to
make the predictions better in the next epoch. This way of propagating the error
backward is called backward propagation (backpropagation). Backpropagation
uses the chain rule from calculus to propagate the error (the error gradient)
in reverse order until it reaches the input layer. As it propagates the error
back through the network, it uses gradient descent to make fine adjustments
to the weights and biases in the network by utilizing the error gradient
calculated before.

This cycle continues until the loss is minimized.

Let's implement the theory we have discussed in TensorFlow. Revisit the code in
Exercise 2.01, Perceptron Implementation, where the perceptron we created just did
one forward pass. We got the following predictions, and we saw that our perceptron
had not learned anything:

tf.Tensor(

[[0.5]

 [0.5]

 [0.5]

 [0.5]], shape=(4, 1), dtype=float32)

In order to make our perceptron learn, we need additional components, such as a
training loop, a loss function, and an optimizer. Let's see how to implement these
components in TensorFlow.

60 | Neural Networks

Perceptron Training Process in TensorFlow

In the next exercise, when we train our model, we will use a Stochastic Gradient
Descent (SGD) optimizer to minimize the loss. There are a few more advanced
optimizers available and provided by TensorFlow out of the box. We will look at the
pros and cons of each of them in later sections. The following code will instantiate a
stochastic gradient descent optimizer using TensorFlow:

learning_rate = 0.01

optimizer = tf.optimizers.SGD(learning_rate)

The perceptron function takes care of the forward propagation. For the
backpropagation of the error, we have used an optimizer. Tf.optimizers.
SGD creates an instance of an optimizer. SGD will update the parameters of the
networks—weights and biases—on each example from the input data. We will
discuss the functioning of the gradient descent optimizer in greater detail later in this
chapter. We will also discuss the significance of the 0.01 parameter, which is known
as the learning rate. The learning rate is the magnitude by which SGD takes a step in
order to reach the global optimum of the loss function. The learning rate is another
hyperparameter that needs to be tweaked in order to train a neural network.

The following code can be used to define the epochs, training loop, and loss function:

no_of_epochs = 1000

for n in range(no_of_epochs):

 loss = lambda:abs(tf.reduce_mean(tf.nn.\

 sigmoid_cross_entropy_with_logits\

 (labels=y,logits=perceptron(X))))

 optimizer.minimize(loss, [W, B])

Inside the training loop, the loss is calculated using the loss function, which is defined
as a lambda function.

The tf.nn.sigmoid_cross_entropy_with_logits function calculates the
loss value of each observation. It takes two parameters: Labels = y and logit =
perceptron(x).

Training a Perceptron | 61

perceptron(X) returns the predicted value, which is the result of the forward
propagation of the input, x. This is compared with the corresponding label value
stored in y. The mean value is calculated using Tf.reduce_mean, and the
magnitude is taken. The sign is ignored using the abs function. Optimizer.
minimize takes the loss value and adjusts the weights and bias as a part of the
backward propagation of the error.

The forward propagation is executed again with the new values of weights and bias.
And this forward and backward process continues for the number of iterations
we define.

During the backpropagation, the weights and biases are updated only if the loss is
less than the previous cycle. Otherwise, the weights and biases remain unchanged.
In this way, the optimizer ensures that even though it loops through the required
number of iterations, it only stores the values of w and b for which the loss is minimal.

We have set the number of epochs for the training to 1,000 iterations. There is no
rule of thumb for setting the number of epochs since the number of epochs is a
hyperparameter. But how do we know when training has taken place successfully?

When we can see that the values of weights and biases have changed, we can
conclude the training has taken place. Let's say we used a training loop for the
OR data we saw in Exercise 2.01, Perceptron Implementation, we would see weights
somewhat equal to the following:

[[0.412449151]

[0.412449151]]

And the bias would be something like this:

0.236065879

When the network has learned, that is, the weights and biases have been updated, we
can see whether it is making accurate predictions using accuracy_score from the
scikit-learn package. We can use it to measure the accuracy of the predictions
as follows:

from sklearn.metrics import accuracy_score

print(accuracy_score(y, ypred))

62 | Neural Networks

Here, accuracy_score takes two parameters—the label values (y) and the
predicted values (ypred)—and measures the accuracy. Let's say the result is 1.0.
This means the perceptron is 100% accurate.

In the next exercise, we will train our perceptron to perform a binary classification.

Exercise 2.02: Perceptron as a Binary Classifier

In the previous section, we learned how to train a perceptron. In this exercise, we
will train our perceptron to approximate a slightly more complicated function. We
will be using randomly generated external data with two classes: class 0 and class
1. Our trained perceptron should be able to classify the random numbers based on
their class:

Note

The data is in a CSV file called data.csv. You can download the file from
GitHub by visiting https://packt.live/2BVtxIf.

1. Import the required libraries:

import tensorflow as tf

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

%matplotlib inline

Apart from tensorflow, we will need pandas to read the data from the CSV
file, confusion_matrix and accuracy_score to measure the accuracy of
our perceptron after the training, and matplotlib to visualize the data.

2. Read the data from the data.csv file. It should be in the same path as the
Jupyter Notebook file in which you are running this exercise's code. Otherwise,
you will have to change the path in the code before executing it:

df = pd.read_csv('data.csv')

https://packt.live/2BVtxIf

Training a Perceptron | 63

3. Examine the data:

df.head()

The output will be as follows:

Figure 2.10: Contents of the DataFrame

As you can see, the data has three columns. x1 and x2 are the features, and the
label column contains the labels 0 or 1 for each observation. The best way to
see this kind of data is through a scatter plot.

4. Visualize the data by plotting it using matplotlib:

plt.scatter(df[df['label'] == 0]['x1'], \

 df[df['label'] == 0]['x2'], \

 marker='*')

plt.scatter(df[df['label'] == 1]['x1'], \

 df[df['label'] == 1]['x2'], marker='<')

64 | Neural Networks

The output will be as follows:

Figure 2.11: Scatter plot of external data

This shows the two distinct classes of the data shown by the two different
shapes. Data with the label 0 is represented by a star, while data with the label 1
is represented by a triangle.

5. Prepare the data. This step is not unique to neural networks; you must have
seen it in regular machine learning as well. Before submitting the data to a
model for training, you split it into features and labels:

X_input = df[['x1','x2']].values

y_label = df[['label']].values

x_input contains the features, x1 and x2. The values at the end convert it into
matrix format, which is what is expected as input when the tensors are created.
y_label contains the labels in matrix format.

6. Create TensorFlow variables for features and labels and typecast them
to float:

x = tf.Variable(X_input, dtype=tf.float32)

y = tf.Variable(y_label, dtype=tf.float32)

Training a Perceptron | 65

7. The rest of the code is for the training of the perceptron, which we saw in
Exercise 2.01, Perceptron Implementation:

Exercise2.02.ipynb

Number_of_features = 2
Number_of_units = 1
learning_rate = 0.01

weights and bias
weight = tf.Variable(tf.zeros([Number_of_features, \
 Number_of_units]))
bias = tf.Variable(tf.zeros([Number_of_units]))

#optimizer
optimizer = tf.optimizers.SGD(learning_rate)

def perceptron(x):
 z = tf.add(tf.matmul(x,weight),bias)
 output = tf.sigmoid(z)
 return output

The complete code for this step can be found at https://packt.live/3gJ73bY.

Note

The # symbol in the code snippet above denotes a code comment.
Comments are added into code to help explain specific bits of logic.

8. Display the values of weight and bias to show that the perceptron has
been trained:

tf.print(weight, bias)

The output is as follows:

[[-0.844034135]

 [0.673354745]] [0.0593947917]

9. Pass the input data to check whether the perceptron classifies it correctly:

ypred = perceptron(x)

10. Round off the output to convert it into binary format:

ypred = tf.round(ypred)

https://packt.live/3gJ73bY

66 | Neural Networks

11. Measure the accuracy using the accuracy_score method, as we did in the
previous exercise:

acc = accuracy_score(y.numpy(), ypred.numpy())

print(acc)

The output is as follows:

1.0

The perceptron gives 100% accuracy.

12. The confusion matrix helps to get the performance measurement of a model.
We will plot the confusion matrix using the scikit-learn package.

cnf_matrix = confusion_matrix(y.numpy(), \

 ypred.numpy())

print(cnf_matrix)

The output will be as follows:

[[12 0]

[0 9]]

All the numbers are along the diagonal, that is, 12 values corresponding to class
0 and 9 values corresponding to class 1 are properly classified by our trained
perceptron (which has achieved 100% accuracy).

Note

To access the source code for this specific section, please refer
to https://packt.live/3gJ73bY.

You can also run this example online at https://packt.live/2DhelFw.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we trained our perceptron into a binary classifier, and it has done
pretty well. In the next exercise, we will see how to create a multiclass classifier.

https://packt.live/3gJ73bY
https://packt.live/2DhelFw

Training a Perceptron | 67

Multiclass Classifier

A classifier that can handle two classes is known as a binary classifier, like the one
we saw in the preceding exercise. A classifier that can handle more than two classes is
known as a multiclass classifier. We cannot build a multiclass classifier with a single
neuron. Now we move from one neuron to one layer of multiple neurons, which is
required for multiclass classifiers.

A single layer of multiple neurons can be trained to be a multiclass classifier. Some
of the key points are detailed here. You need as many neurons as the number of
classes; that is, for a 3-class classifier, you need 3 neurons; for a 10-class classifier you
need 10 neurons, and so on.

As we saw in binary classification, we used sigmoid (logistic layer) to get predictions
in the range of 0 to 1. In multiclass classification, we use a special type of activation
function called the Softmax activation function to get probabilities across each class
that sums to 1. With the sigmoid function in a multiclass setting, the probabilities do
not necessarily add up to 1, so Softmax is preferred.

Before we implement the multiclass classifier, let's explore the Softmax
activation function.

The Softmax Activation Function

The Softmax function is also known as the normalized exponential function. As
the word normalized suggests, the Softmax function normalizes the input into a
probability distribution that sums to 1. Mathematically, it is represented as follows:

Figure 2.12: Mathematical form of the Softmax function

68 | Neural Networks

To understand what Softmax does, let's use TensorFlow's built-in softmax function
and see the output.

So, for the following code:

values = tf.Variable([3,1,7,2,4,5], dtype=tf.float32)

output = tf.nn.softmax(values)

tf.print(output)

The output will be:

[0.0151037546 0.00204407098 0.824637055

 0.00555636082 0.0410562605 0.111602485]

As you can see in the output, the values input is mapped to a probability
distribution that sums to 1. Note that 7 (the highest value in the original input values)
received the highest weight, 0.824637055. This is what the Softmax function is
mainly used for: to focus on the largest values and suppress values that are below the
maximum value. Also, if we sum the output, it adds up to ~ 1.

Illustrating the example in more detail, let's say we want to build a multiclass classifier
with 3 classes. We will need 3 neurons connected to a Softmax activation function:

Figure 2.13: Softmax activation function used in a multiclass classification setting

Training a Perceptron | 69

As seen in Figure 2.13, x1, x2, and x3 are the input features, which go through the
net input function of each of the three neurons, which have the weights and biases
(Wi, j and bi) associated with it. Lastly, the output of the neuron is fed to the common
Softmax activation function instead of the individual sigmoid functions. The Softmax
activation function spits out the probabilities of the 3 classes: P1, P2, and P3. The
sum of these three probabilities will add to 1 because of the Softmax layer.

As we saw in the previous section, Softmax highlights the maximum value and
suppresses the rest of the values. Suppose a neural network is trained to classify
the input into three classes, and for a given set of inputs, the output is class 2; then
it would say that P2 has the highest value since it is passed through a Softmax layer.
As you can see in the following figure, P2 has the highest value, which means the
prediction is correct:

Figure 2.14: Probability P2 is the highest

70 | Neural Networks

An associated concept is one-hot encoding. As we have three different classes,
class1, class2, and class3, we need to encode the class labels into a format
that we can work with more easily; so, after applying one-hot encoding, we would see
the following output:

Figure 2.15: One-hot encoded data for three classes

This makes the results quick and easy to interpret. In this case, the output that has
the highest value is set to 1, and all others are set to 0. The one-hot encoded output
of the preceding example would be like this:

 Figure 2.16: One-hot encoded output probabilities

Training a Perceptron | 71

The labels of the training data also need to be one-hot encoded. And if they
have a different format, they need to be converted into one-hot-encoded format
before training the model. Let's do an exercise on multiclass classification with
one-hot encoding.

Exercise 2.03: Multiclass Classification Using a Perceptron

To perform multiclass classification, we will be using the Iris dataset (https://archive.
ics.uci.edu/ml/datasets/Iris), which has 3 classes of 50 instances each, where each class
refers to a type of Iris. We will have a single layer of three neurons using the Softmax
activation function:

Note

You can download the dataset from GitHub using this link:
https://packt.live/3ekiBBf.

1. Import the required libraries:

import tensorflow as tf

import pandas as pd

from sklearn.metrics import confusion_matrix

from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

%matplotlib inline

from pandas import get_dummies

You must be familiar with all of these imports as they were used in the previous
exercise, except for get_dummies. This function converts a given label data
into the corresponding one-hot-encoded format.

2. Load the iris.csv data:

df = pd.read_csv('iris.csv')

https://archive.ics.uci.edu/ml/datasets/Iris
https://archive.ics.uci.edu/ml/datasets/Iris
https://packt.live/3ekiBBf

72 | Neural Networks

3. Let's examine the first five rows of the data:

df.head()

The output will be as follows:

Figure 2.17: Contents of the DataFrame

4. Visualize the data by using a scatter plot:

plt.scatter(df[df['species'] == 0]['sepallength'],\

 df[df['species'] == 0]['sepalwidth'], marker='*')

plt.scatter(df[df['species'] == 1]['sepallength'],\

 df[df['species'] == 1]['sepalwidth'], marker='<')

plt.scatter(df[df['species'] == 2]['sepallength'], \

 df[df['species'] == 2]['sepalwidth'], marker='o')

The resulting plot will be as follows. The x axis denotes the sepal length and the y
axis denotes the sepal width. The shapes in the plot represent the three species
of Iris, setosa (star), versicolor (triangle), and virginica (circle):

Training a Perceptron | 73

Figure 2.18: Iris data scatter plot

There are three classes, as can be seen in the visualization, denoted by
different shapes.

5. Separate the features and the labels:

x = df[['petallength', 'petalwidth', \

 'sepallength', 'sepalwidth']].values

y = df['species'].values

values will transform the features into matrix format.

6. Prepare the data by doing one-hot encoding on the classes:

y = get_dummies(y)

y = y.values

get_dummies(y) will convert the labels into one-hot-encoded format.

74 | Neural Networks

7. Create a variable to load the features and typecast it to float32:

x = tf.Variable(x, dtype=tf.float32)

8. Implement the perceptron layer with three neurons:

Number_of_features = 4

Number_of_units = 3

weights and bias

weight = tf.Variable(tf.zeros([Number_of_features, \

 Number_of_units]))

bias = tf.Variable(tf.zeros([Number_of_units]))

def perceptron(x):

 z = tf.add(tf.matmul(x, weight), bias)

 output = tf.nn.softmax(z)

 return output

The code looks very similar to the single perceptron implementation. Only the
Number_of_units parameter is set to 3. Therefore, the weight matrix will be
4 x 3 and the bias matrix will be 1 x 3.

The other change is in the activation function:

Output=tf.nn.softmax(x)

We are using softmax instead of sigmoid.

9. Create an instance of the optimizer. We will be using the Adam optimizer. At
this point, you can think of Adam as an improved version of gradient descent
that converges faster. We will cover it in detail later in the chapter:

optimizer = tf.optimizers.Adam(.01)

10. Define the training function:

def train(i):

 for n in range(i):

 loss=lambda: abs(tf.reduce_mean\

 (tf.nn.softmax_cross_entropy_with_logits(\

 labels=y, logits=perceptron(x))))

 optimizer.minimize(loss, [weight, bias])

Training a Perceptron | 75

Again, the code looks very similar to the single-neuron implementation except
for the loss function. Instead of sigmoid_cross_entropy_with_logits,
we use softmax_cross_entropy_with_logits.

11. Run the training for 1000 iterations:

train(1000)

12. Print the values of the weights to see if they have changed. This is also an
indication that our perceptron is learning:

tf.print(weight)

The output shows the learned weights of our perceptron:

[[0.684310317 0.895633 -1.0132345]

 [2.6424644 -1.13437736 -3.20665336]

 [-2.96634197 -0.129377216 3.2572844]

 [-2.97383809 -3.13501668 3.2313652]]

13. To test the accuracy, we feed the features to predict the output and then
calculate the accuracy using accuracy_score, like in the previous exercise:

ypred=perceptron(x)

ypred=tf.round(ypred)

accuracy_score(y, ypred)

The output is:

0.98

It has given 98% accuracy, which is pretty good.

Note

To access the source code for this specific section, please refer
to https://packt.live/2Dhes3U.

You can also run this example online at https://packt.live/3iJJKkm.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we performed multiclass classification using our perceptron. Let's
do a more complex and interesting case study of the handwritten digit recognition
dataset in the next section.

https://packt.live/2Dhes3U
https://packt.live/3iJJKkm

76 | Neural Networks

MNIST Case Study

Now that we have seen how to train a single neuron and a single layer of neurons,
let's take a look at more realistic data. MNIST is a famous case study. In the next
exercise, we will create a 10-class classifier to classify the MNIST dataset. However,
before that, you should get a good understanding of the MNIST dataset.

Modified National Institute of Standards and Technology (MNIST) refers to the
modified dataset that the team led by Yann LeCun worked with at NIST. This project
was aimed at handwritten digit recognition using neural networks.

We need to understand the dataset before we get into writing the code. The MNIST
dataset is integrated into the TensorFlow library. It consists of 70,000 handwritten
images of the digits 0 to 9:

Figure 2.19: Handwritten digits

When we say images, you might think these are JPEG files, but they are not. They are
actually stored in the form of pixel values. As far as the computer is concerned, an
image is a bunch of numbers. These numbers are pixel values ranging from 0 to 255.
The dimension of each of these images is 28 x 28. The images are stored in the form
of a 28 x 28 matrix, each cell containing real numbers ranging from 0 to 255. These
are grayscale images (commonly known as black and white). 0 indicates white and 1
indicates complete black, and values in between indicate a certain shade of gray. The
MNIST dataset is split into 60,000 training images and 10,000 test images.

Each image has a label associated with it ranging from 0 to 9. In the next exercise,
let's build a 10-class classifier to classify the handwritten MNIST images.

Training a Perceptron | 77

Exercise 2.04: Classifying Handwritten Digits

In this exercise, we will build a single-layer 10-class classifier consisting of 10 neurons
with the Softmax activation function. It will have an input layer of 784 pixels:

1. Import the required libraries and packages just like we did in the earlier exercise:

import tensorflow as tf

import pandas as pd

from sklearn.metrics import accuracy_score

import matplotlib.pyplot as plt

%matplotlib inline

from pandas import get_dummies

2. Create an instance of the MNIST dataset:

mnist = tf.keras.datasets.mnist

3. Load the MNIST dataset's train and test data:

(train_features, train_labels), (test_features, test_labels) = \

mnist.load_data()

4. Normalize the data:

train_features, test_features = train_features / 255.0, \

 test_features / 255.0

5. Flatten the 2-dimensional images into row matrices. So, a 28 × 28 pixel gets
flattened to 784 using the reshape function:

x = tf.reshape(train_features,[60000, 784])

6. Create a Variable with the features and typecast it to float32:

x = tf.Variable(x)

x = tf.cast(x, tf.float32)

7. Create a one-hot encoding of the labels and transform it into a matrix:

y_hot = get_dummies(train_labels)

y = y_hot.values

78 | Neural Networks

8. Create the single-layer neural network with 10 neurons and train it for
1000 iterations:

Exercise2.04.ipynb

#defining the parameters
Number_of_features = 784
Number_of_units = 10

weights and bias
weight = tf.Variable(tf.zeros([Number_of_features, \
 Number_of_units]))
bias = tf.Variable(tf.zeros([Number_of_units]))

The complete code for this step can be accessed from https://packt.live/3efd7Yh.

9. Prepare the test data to measure the accuracy:

Prepare the test data to measure the accuracy.

test = tf.reshape(test_features, [10000, 784])

test = tf.Variable(test)

test = tf.cast(test, tf.float32)

test_hot = get_dummies(test_labels)

test_matrix = test_hot.values

10. Run the predictions by passing the test data through the network:

ypred = perceptron(test)

ypred = tf.round(ypred)

11. Calculate the accuracy:

accuracy_score(test_hot, ypred)

The predicted accuracy is:

0.9304

Note

To access the source code for this specific section, please refer
to https://packt.live/3efd7Yh.

You can also run this example online at https://packt.live/2Oc83ZW.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3efd7Yh
https://packt.live/3efd7Yh
https://packt.live/2Oc83ZW

Keras as a High-Level API | 79

In this exercise, we saw how to create a single-layer multi-neuron neural network and
train it as a multiclass classifier.

The next step is to build a multilayer neural network. However, before we do that, we
must learn about the Keras API, since we use Keras to build dense neural networks.

Keras as a High-Level API
In TensorFlow 1.0, there were several APIs, such as Estimator, Contrib, and layers.
In TensorFlow 2.0, Keras is very tightly integrated with TensorFlow, and it provides a
high-level API that is user-friendly, modular, composable, and easy to extend in order
to build and train deep learning models. This also makes developing code for neural
networks much easier. Let's see how it works.

Exercise 2.05: Binary Classification Using Keras

In this exercise, we will implement a very simple binary classifier with a single neuron
using the Keras API. We will use the same data.csv file that we used in Exercise
2.02, Perceptron as a Binary Classifier:

Note

The dataset can be downloaded from GitHub by accessing the following
GitHub link: https://packt.live/2BVtxIf.

1. Import the required libraries:

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

Import Keras libraries

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

80 | Neural Networks

In the code, Sequential is the type of Keras model that we will be using
because it is very easy to add layers to it. Dense is the type of layer that will
be added. These are the regular neural network layers as opposed to the
convolutional layers or pooling layers that will be used later on.

2. Import the data:

df = pd.read_csv('data.csv')

3. Inspect the data:

df.head()

The following will be the output:

Figure 2.20: Contents of the DataFrame

4. Visualize the data using a scatter plot:

plt.scatter(df[df['label'] == 0]['x1'], \

 df[df['label'] == 0]['x2'], marker='*')

plt.scatter(df[df['label'] == 1]['x1'], \

 df[df['label'] == 1]['x2'], marker='<')

Keras as a High-Level API | 81

The resulting plot is as follows, with the x axis denoting x1 values and the y-axis
denoting x2 values:

Figure 2.21: Scatter plot of the data

5. Prepare the data by separating the features and labels and setting the
tf variables:

x_input = df[['x1','x2']].values

y_label = df[['label']].values

6. Create a neural network model consisting of a single layer with a neuron and a
sigmoid activation function:

model = Sequential()

model.add(Dense(units=1, input_dim=2, activation='sigmoid'))

The parameters in mymodel.add(Dense()) are as follows: units is the
number of neurons in the layer; input_dim is the number of features, which in
this case is 2; and activation is sigmoid.

82 | Neural Networks

7. Once the model is created, we use the compile method to pass the additional
parameters that are needed for training, such as the type of the optimizer, the
loss function, and so on:

model.compile(optimizer='adam', \

 loss='binary_crossentropy',\

 metrics=['accuracy'])

In this case, we are using the adam optimizer, which is an enhanced version
of the gradient descent optimizer, and the loss function is binary_
crossentropy, since this is a binary classifier.

The metrics parameter is almost always set to ['accuracy'], which is
used to display information such as the number of epochs, the training loss, the
training accuracy, the test loss, and the test accuracy during the training process.

8. The model is now ready to be trained. However, it is a good idea to check the
configuration of the model by using the summary function:

model.summary()

The output will be as follows:

Figure 2.22: Summary of the sequential model

Keras as a High-Level API | 83

9. Train the model by calling the fit() method:

model.fit(x_input, y_label, epochs=1000)

It takes the features and labels as the data parameters along with the number
of epochs, which in this case is 1000. The model will start training and will
continuously provide the status as shown here:

Figure 2.23: Model training logs using Keras

10. We will evaluate our model using Keras's evaluate functionality:

model.evaluate(x_input, y_label)

The output is as follows:

21/21 [==============================] - 0s 611us/sample - loss:
 0.2442 - accuracy: 1.0000
[0.24421504139900208, 1.0]

As you can see, our Keras model is able to train well, as our accuracy is 100%.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZVV1VY.

You can also run this example online at https://packt.live/38CzhTc.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2ZVV1VY
https://packt.live/38CzhTc

84 | Neural Networks

In this exercise, we have learned how to build a perceptron using Keras. As you have
seen, Keras makes the code more modular and more readable, and the parameters
easier to tweak. In the next section, we will see how to build a multilayer or deep
neural network using Keras.

Multilayer Neural Network or Deep Neural Network

In the previous example, we developed a single-layer neural network, often referred
to as a shallow neural network. A diagram of this follows:

Figure 2.24: Shallow neural network

One layer of neurons is not sufficient to solve more complex problems, such as face
recognition or object detection. You need to stack up multiple layers. This is often
referred to as creating a deep neural network. A diagram of this follows:

Keras as a High-Level API | 85

Figure 2.25: Deep neural network

Before we jump into the code, let's try to understand how this works. Input data is
fed to the neurons in the first layer. It must be noted that every input is fed to every
neuron in the first layer, and every neuron has one output. The output from each
neuron in the first layer is fed to every neuron in the second layer. The output of each
neuron in the second layer is fed to every neuron in the third layer, and so on.

86 | Neural Networks

That is why this kind of network is also referred to as a dense neural network or
a fully connected neural network. There are other types of neural networks with
different workings, such as CNNs, but that is something we will discuss in the next
chapter. There is no set rule about the number of neurons in each layer. This is
usually determined by trial and error in a process known as hyperparameter tuning
(which we'll learn about later in the chapter). However, when it comes to the number
of neurons in the last layers, there are some restrictions. The configuration of the last
layer is determined as follows:

Figure 2.26: Last layer configuration

ReLU Activation Function

One last thing to do before we implement the code for deep neural networks is
learn about the ReLU activation function. This is one of the most popular activation
functions used in multilayer neural networks.

ReLU is a shortened form of Rectified Linear Unit. The output of the ReLU function
is always a non-negative value that is greater than or equal to 0:

Figure 2.27: ReLU activation function

Keras as a High-Level API | 87

The mathematical expression for ReLU is:

Figure 2.28: ReLU activation function

ReLU converges much more quickly than the sigmoid activation function, and
therefore it is by far the most widely used activation function. ReLU is used in almost
every deep neural network. It is used in all the layers except the last layer, where
either sigmoid or Softmax is used.

The ReLU activation function is provided by TensorFlow out of the box. To see how it
is implemented, let's give some sample input values to a ReLU function and see the
output:

values = tf.Variable([1.0, -2., 0., 0.3, -1.5], dtype=tf.float32)

output = tf.nn.relu(values)

tf.print(output)

The output is as follows:

[1 0 0 0.3 0]

As you can see, all the positive values are retained, and the negative values are
suppressed to zero. Let's use this ReLU activation function in the next exercise to do a
multilayer binary classification task.

Exercise 2.06: Multilayer Binary Classifier

In this exercise, we will implement a multilayer binary classifier using the data.csv
file that we used in Exercise 2.02, Perceptron as a Binary Classifier.

We will build a binary classifier with a deep neural network of the following
configuration. There will be an input layer with 2 nodes and 2 hidden layers, the first
with 50 neurons and the second with 20 neurons, and lastly a single neuron to do the
final prediction belonging to any binary class:

Note

The dataset can be downloaded from GitHub using the following link:
https://packt.live/2BVtxIf .

88 | Neural Networks

1. Import the required libraries and packages:

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

##Import Keras libraries

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

2. Import and inspect the data:

df = pd.read_csv('data.csv')

df.head()

The output is as follows:

Figure 2.29: The first five rows of the data

3. Visualize the data using a scatter plot:

plt.scatter(df[df['label'] == 0]['x1'], \

 df[df['label'] == 0]['x2'], marker='*')

plt.scatter(df[df['label'] == 1]['x1'], \

 df[df['label'] == 1]['x2'], marker='<')

Keras as a High-Level API | 89

The resulting output is as follows, with the x axis showing x1 values and the y
axis showing x2 values:

Figure 2.30: Scatter plot for given data

4. Prepare the data by separating the features and labels and setting the
tf variables:

x_input = df[['x1','x2']].values

y_label = df[['label']].values

5. Build the Sequential model:

model = Sequential()

model.add(Dense(units = 50,input_dim=2, activation = 'relu'))

model.add(Dense(units = 20 , activation = 'relu'))

model.add(Dense(units = 1,input_dim=2, activation = 'sigmoid'))

Here are a couple of points to consider. We provide the input details for the first
layer, then use the ReLU activation function for all the intermediate layers, as
discussed earlier. Furthermore, the last layer has only one neuron with a sigmoid
activation function for binary classifiers.

90 | Neural Networks

6. Provide the training parameters using the compile method:

model.compile(optimizer='adam', \

 loss='binary_crossentropy', metrics=['accuracy'])

7. Inspect the model configuration using the summary function:

model.summary()

The output will be as follows:

Figure 2.31: Deep neural network model summary using Keras

In the model summary, we can see that there are a total of 1191 parameters—
weights and biases—to learn across the hidden layers to the output layer.

8. Train the model by calling the fit() method:

model.fit(x_input, y_label, epochs=50)

Notice that, in this case, the model reaches 100% accuracy within 50 epochs,
unlike the single-layer model, which needed about 1,000 epochs:

Keras as a High-Level API | 91

Figure 2.32: Multilayer model train logs

9. Let's evaluate the model's performance:

model.evaluate(x_input, y_label)

The output is as follows:

21/21 [==============================] - 0s 6ms/sample - loss:
 0.1038 - accuracy: 1.0000
[0.1037961095571518, 1.0]

Our model has now been trained and demonstrates 100% accuracy.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZUkM94.

You can also run this example online at https://packt.live/3iKsD1W.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we learned how to build a multilayer neural network using Keras. This
is a binary classifier. In the next exercise, we will build a deep neural network for a
multiclass classifier with the MNIST dataset.

https://packt.live/2ZUkM94
https://packt.live/3iKsD1W

92 | Neural Networks

Exercise 2.07: Deep Neural Network on MNIST Using Keras

In this exercise, we will perform a multiclass classification by implementing a deep
neural network (multi-layer) for the MNIST dataset where our input layer comprises
28 × 28 pixel images flattened to 784 input nodes followed by 2 hidden layers, the
first with 50 neurons and the second with 20 neurons. Lastly, there will be a Softmax
layer consisting of 10 neurons since we are classifying the handwritten digits into
10 classes:

1. Import the required libraries and packages:

import tensorflow as tf

import pandas as pd

import matplotlib.pyplot as plt

%matplotlib inline

Import Keras libraries

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Flatten

2. Load the MNIST data:

mnist = tf.keras.datasets.mnist

(train_features,train_labels), (test_features,test_labels) = \

mnist.load_data()

train_features has the training images in the form of 28 x 28 pixel values.

train_labels has the training labels. Similarly, test_features has the test
images in the form of 28 x 28 pixel values. test_labels has the test labels.

3. Normalize the data:

train_features, test_features = train_features / 255.0, \

 test_features / 255.0

The pixel values of the images range from 0-255. We need to normalize the
values by dividing them by 255 so that the range goes from 0 to 1.

Keras as a High-Level API | 93

4. Build the sequential model:

model = Sequential()

model.add(Flatten(input_shape=(28,28)))

model.add(Dense(units = 50, activation = 'relu'))

model.add(Dense(units = 20 , activation = 'relu'))

model.add(Dense(units = 10, activation = 'softmax'))

There are couple of points to note. The first layer in this case is not actually a
layer of neurons but a Flatten function. This flattens the 28 x 28 image into a
single array of 784, which is fed to the first hidden layer of 50 neurons. The last
layer has 10 neurons corresponding to the 10 classes with a softmax activation
function.

5. Provide training parameters using the compile method:

model.compile(optimizer = 'adam', \

 loss = 'sparse_categorical_crossentropy', \

 metrics = ['accuracy'])

Note

The loss function used here is different from the binary classifier. For a
multiclass classifier, the following loss functions are used: sparse_
categorical_crossentropy, which is used when the labels are not
one-hot encoded, as in this case; and, categorical_crossentropy,
which is used when the labels are one-hot encoded.

6. Inspect the model configuration using the summary function:

model.summary()

94 | Neural Networks

The output is as follows:

Figure 2.33: Deep neural network summary

In the model summary, we can see that there are a total of 40,480 parameters—
weights and biases—to learn across the hidden layers to the output layer.

7. Train the model by calling the fit method:

model.fit(train_features, train_labels, epochs=50)

The output will be as follows:

Figure 2.34: Deep neural network training logs

Keras as a High-Level API | 95

8. Test the model by calling the evaluate() function:

model.evaluate(test_features, test_labels)

The output will be:

10000/10000 [==============================] - 1s 76us/sample - loss:
 0.2072 - accuracy: 0.9718
[0.20719025060918111, 0.9718]

Now that the model is trained and tested, in the next few steps, we will run the
prediction with some images selected randomly.

9. Load a random image from a test dataset. Let's locate the 200th image:

loc = 200

test_image = test_features[loc]

10. Let's see the shape of the image using the following command:

test_image.shape

The output is:

(28,28)

We can see that the shape of the image is 28 x 28. However, the model expects
3-dimensional input. We need to reshape the image accordingly.

11. Use the following code to reshape the image:

test_image = test_image.reshape(1,28,28)

12. Let's call the predict() method of the model and store the output in a
variable called result:

result = model.predict(test_image)

print(result)

result has the output in the form of 10 probability values, as shown here:

[[2.9072076e-28 2.1215850e-29 1.7854708e-21

 1.0000000e+00 0.0000000e+00 1.2384960e-15

 1.2660366e-34 1.7712217e-32 1.7461657e-08

 9.6417470e-29]]

96 | Neural Networks

13. The position of the highest value will be the prediction. Let's use the argmax
function we learned about in the previous chapter to find out the prediction:

result.argmax()

In this case, it is 3:

3

14. In order to check whether the prediction is correct, we check the label of the
corresponding image:

test_labels[loc]

Again, the value is 3:

3

15. We can also visualize the image using pyplot:

plt.imshow(test_features[loc])

The output will be as follows:

Figure 2.35: Test image visualized

Exploring the Optimizers and Hyperparameters of Neural Networks | 97

And this shows that the prediction is correct.

Note

To access the source code for this specific section, please refer
to https://packt.live/2O5KRgd.

You can also run this example online at https://packt.live/2O8JHR0.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we created a multilayer multiclass neural network model using Keras
to classify the MNIST data. With the model we built, we were able to correctly predict
a random handwritten digit.

Exploring the Optimizers and Hyperparameters of
Neural Networks
Training a neural network to get good predictions requires tweaking a lot of
hyperparameters such as optimizers, activation functions, the number of hidden
layers, the number of neurons in each layer, the number of epochs, and the learning
rate. Let's go through each of them one by one and discuss them in detail.

Gradient Descent Optimizers

In an earlier section titled Perceptron Training Process in TensorFlow, we briefly touched
upon the gradient descent optimizer without going into the details of how it works.
This is a good time to explore the gradient descent optimizer in a little more detail.
We will provide an intuitive explanation without going into the mathematical details.

The gradient descent optimizer's function is to minimize the loss or error. To
understand how gradient descent works, you can think of this analogy: imagine a
person at the top of a hill who wants to reach the bottom. At the beginning of the
training, the loss is large, like the height of the hill's peak. The functioning of the
optimizer is akin to the person descending the hill to the valley at the bottom, or
rather, the lowest point of the hill, and not climbing up the hill that is on the other
side of the valley.

https://packt.live/2O5KRgd
https://packt.live/2O8JHR0

98 | Neural Networks

Remember the learning rate parameter that we used while creating the optimizer?
That can be compared to the size of the steps the person takes to climb down the hill.
If these steps are large, it is fine at the beginning since the person can climb down
faster, but once they near the bottom, if the steps are too large, the person crosses
over to the other side of the valley. Then, in order to climb back down to the bottom
of the valley, the person will try to move back but will move over to the other side
again. This results in going back and forth without reaching the bottom of the valley.

On the other hand, if the person takes very small steps (a very small learning rate),
they will take forever to reach the bottom of the valley; in other words, the model will
take forever to converge. So, finding a learning rate that is neither too small nor too
big is very important. However, unfortunately, there is no rule of thumb to find out in
advance what the right value should be—we have to find it by trial and error.

There are two main types of gradient-based optimizers: batch and stochastic gradient
descent. Before we jump into them, let's recall that one epoch means a training
iteration where the neural network goes through all the training examples:

• In an epoch, when we reduce the loss across all the training examples, it is
called batch gradient descent. This is also known as full batch gradient
descent. To put it simply, after going through a full batch, we take a step to
adjust the weights and biases of the network to reduce the loss and improve
the predictions. There is a similar form of it called mini-batch gradient descent,
where we take steps, that is, we adjust weights and biases, after going through a
subset of the full dataset.

• In contrast to batch gradient descent, when we take a step at one example per
iteration, we have stochastic gradient descent (SGD). The word stochastic tells
us there is randomness involved here, which, in this case, is the batch that is
randomly selected.

Though SGD works relatively well, there are advanced optimizers that can speed up
the training process. They include SGD with momentum, Adagrad, and Adam.

Exploring the Optimizers and Hyperparameters of Neural Networks | 99

The Vanishing Gradient Problem

In the Training a Perceptron section, we learned about the forward and backward
propagation of neural networks. When a neural network performs forward
propagation, the error gradient is calculated with respect to the true label, and
backpropagation is performed to see which parameters (the weights and biases)
of the neural network have contributed to the error and the extent to which they
have done so. The error gradient is propagated from the output layer to the input
layer to calculate gradients with respect to each parameter, and in the last step, the
gradient descent step is performed to adjust the weights and biases according to
the calculated gradient. As the error gradient is propagated backward, the gradients
calculated at each parameter become smaller and smaller as it advances to the lower
(initial) layers. This decrease in the gradients means that the changes to the weights
and biases become smaller and smaller. Hence, our neural network struggles to
find the global minimum and does not give good results. This is called the vanishing
gradient problem. The problem happens with the use of the sigmoid (logistic)
function as an activation function, and hence we use the ReLU activation function
to train deep neural network models to avoid gradient complications and improve
the results.

Hyperparameter Tuning

Like any other model training process in machine learning, it is possible to perform
hyperparameter tuning to improve the performance of the neural network model.
One of the parameters is the learning rate. The other parameters are as follows:

• Number of epochs: Increasing the number of epochs generally increases the
accuracy and lowers the loss

• Number of layers: Increasing the number of layers increases the accuracy, as
we saw in the exercises with MNIST

• Number of neurons per layer: This also increases the accuracy

And once again, there is no way to know in advance what the right number of
layers or the right number of neurons per layer is. This has to be figured out by trial
and error. It has to be noted that the larger the number of layers and the larger
the number of neurons per layer, the greater the computational power required.
Therefore, we start with the smallest possible numbers and slowly increase the
number of layers and neurons.

100 | Neural Networks

Overfitting and Dropout

Neural networks with complex architectures and too many parameters tend to fit on
all the data points, including noisy labels, leading to the problem of overfitting and
neural networks that are not able to generalize well on unseen datasets. To tackle this
issue, there is a technique called dropout:

Figure 2.36: Dropout illustrated

In this technique, a certain number of neurons are deactivated randomly during
the training process. The number of neurons to be deactivated is provided as a
parameter in the form of a percentage. For example, Dropout = .2 means 20%
of the neurons in that layer will be randomly deactivated during the training process.
The same neurons are not deactivated more than once, but a different set of neurons
is deactivated in each epoch. During testing, however, all the neurons are activated.

Here is an example of how we can add Dropout to a neural network model
using Keras:

model.add(Dense(units = 300, activation = 'relu')) #Hidden layer1

model.add(Dense(units = 200, activation = 'relu')) #Hidden Layer2

model.add(Dropout(.20))

model.add(Dense(units = 100, activation = 'relu')) #Hidden Layer3

In this case, a dropout of 20% is added to Hidden Layer2. It is not necessary for
the dropout to be added to all layers. As a data scientist, you can experiment and
decide what the dropout value should be and how many layers need it.

Activity 2.01: Build a Multilayer Neural Network to Classify Sonar Signals | 101

Note

A more detailed explanation of dropout can be found in the paper by Nitish
Srivastava et al. available here: http://www.jmlr.org/papers/volume15/
srivastava14a/srivastava14a.pdf.

As we have come to the end of this chapter, let's test what we have learned so far
with the following activity.

Activity 2.01: Build a Multilayer Neural Network to Classify
Sonar Signals
In this activity, we will use the Sonar dataset (https://archive.ics.uci.edu/ml/datasets/
Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)), which has patterns obtained by
bouncing sonar signals off a metal cylinder at various angles and under various
conditions. You will build a neural network-based classifier to classify between sonar
signals bounced off a metal cylinder (the Mine class), and those bounced off a roughly
cylindrical rock (the Rock class). We recommend using the Keras API to make your
code more readable and modular, which will allow you to experiment with different
parameters easily:

Note

You can download the sonar dataset from this link
https://packt.live/31Xtm9M.

1. The first step is to understand the data so that you can figure out whether this is
a binary classification problem or a multiclass classification problem.

2. Once you understand the data and the type of classification that needs to
be done, the next step is network configuration: the number of neurons, the
number of hidden layers, which activation function to use, and so on.

Recall the network configuration steps that we've covered so far. Let's just
reiterate a crucial point, the activation function part: for the output (the
last) layer, we use sigmoid to do binary classification and Softmax to do
multiclass classification.

http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
https://packt.live/31Xtm9M

102 | Neural Networks

3. Open the sonar.csv file to explore the dataset and see what the target
variables are.

4. Separate the input features and the target variables.

5. Preprocess the data to make it neural network-compatible. Hint:
one-hot encoding.

6. Define a neural network using Keras and compile it with the right loss function.

7. Print out a model summary to verify the network parameters
and considerations.

You are expected to get an accuracy value above 95% by designing a proper
multilayer neural network using these steps.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 390.

Summary
In this chapter, we started off by looking at biological neurons and then moved on to
artificial neurons. We saw how neural networks work and took a practical approach
to building single-layer and multilayer neural networks to solve supervised learning
tasks. We looked at how a perceptron works, which is a single unit of a neural
network, all the way to a deep neural network capable of performing multiclass
classification. We saw how Keras makes it very easy to create deep neural networks
with a minimal amount of code. Lastly, we looked at practical considerations to take
into account when building a successful neural network, which involved important
concepts such as gradient descent optimizers, overfitting, and dropout.

In the next chapter, we will go to the next level and build a more complicated neural
network called a CNN, which is widely used in image recognition.

Introduction

In this chapter, we will study convolutional neural networks (CNNs)
and image classification. First, we will be introduced to the architecture of
CNNs and how to implement them. We will then get hands-on experience
of using TensorFlow to develop image classifiers. Finally, we will cover the
concepts of transfer learning and fine-tuning and see how we can use state-
of-the-art algorithms.

By the end of this chapter, you will have a good understanding of what
CNNs are and how programming with TensorFlow works.

Image Classification with

Convolutional Neural

Networks (CNNs)

3

106 | Image Classification with Convolutional Neural Networks (CNNs)

Introduction
In the previous chapters, we learned about traditional neural networks and a
number of models, such as the perceptron. We learned how to train such models on
structured data for regression or classification purposes. Now, we will learn how we
can extend their application to the computer vision field.

Not so long ago, computers were perceived as computing engines that could only
process well-defined and logical tasks. Humans, on the other hand, are more complex
since we have five basic senses that help us see things, hear noises, feel things, taste
foods, and smell odors. Computers were only calculators that could operate large
volumes of logical operations, but they couldn't deal with complex data. Compared to
the abilities of humans, computers had very clear limitations.

There were some rudimentary attempts to “give sight" to computers by processing
and analyzing digital images. This field is called computer vision. But it was not until
the advent of deep learning that we saw some incredible improvements and results.
Nowadays, the field of computer vision has advanced to such an extent that, in some
cases, computer vision AI systems are able to process and interpret certain types
of images faster and more accurately than humans. You may have heard about the
experiment where a group of 15 doctors in China competed against a deep learning
system from the company BioMind AI for recognizing brain tumors from X-rays. The
AI system took 15 minutes to accurately predict 87% of the 225 input images, while it
took 30 minutes for the medical experts to achieve a score of 66% on the same pool
of images.

We've all heard about self-driving cars that can automatically make the right decisions
depending on traffic conditions or drones that can detect sharks and automatically
send alerts to lifeguards. All these amazing applications are possible thanks to the
recent development of CNNs.

Introduction | 107

Computer vision can be split into four different domains:

• Image classification, where we need to recognize the main object in an image.

• Image classification and localization, where we need to recognize and localize
the main object in an image with a bounding box.

• Object detection, where we need to recognize multiple objects in an image with
bounding boxes.

• Image segmentation, where we need to identify the boundaries of objects in
an image.

The following figure shows the difference between the four domains:

Figure 3.1: Difference between the four domains of computer vision

In this chapter, we will only look at image classification, which is the most widely used
application of CNN. This includes things such as car plate recognition, automatic
categorization of the pictures taken with your mobile phone, or creating metadata
used by search engines on databases of images.

Note

If you're reading the print version of this book, you can download and
browse the color versions of some of the images in this chapter by visiting
the following link: https://packt.live/2ZUu5G2

https://packt.live/2ZUu5G2

108 | Image Classification with Convolutional Neural Networks (CNNs)

Digital Images
Humans can see through their eyes by transforming light into electrical signals that
are then processed by the brain. But computers do not have physical eyes to capture
light. They can only process information in digital forms composed of bits (0 or 1). So,
to be able to “see", computers require a digitized version of an image.

A digital image is formed by a two-dimensional matrix of pixels. For a grayscale
image, each of these pixels can take a value between 0 and 255 that represents its
intensity or level of gray. A digital image can be composed of one channel for a black
and white image or three channels (red, blue, and green) for a color image:

Figure 3.2: Digital representation of an image

A digital image is characterized by its dimensions (height, width, and channel):

• Height: How many pixels there are on the vertical axis.

• Width: How many pixels there are on the horizontal axis.

• Channel: How many channels there are. If there is only one channel, an image
will be in grayscale. If there are three channels, the image will be colored.

Image Processing | 109

The following digital image has dimensions (512, 512, 3).

Figure 3.3: Dimensions of a digital image

Image Processing
Now that we know how a digital image is represented, let's discuss how computers
can use this information to find patterns that will be used to classify an image or
localize objects. So, in order to get any useful or actionable information from an
image, a computer has to resolve an image into a recognizable or known pattern. As
for any machine learning algorithm, computer vision needs some features in order to
learn patterns.

Unlike structured data, where each feature is well defined in advance and stored in
separate columns, images don't follow any specific pattern. It is impossible to say,
for instance, that the third line will always contain the eye of an animal or that the
bottom left corner will always represent a red, round-shaped object. Images can be
of anything and don't follow any structure. This is why they are considered to be
unstructured data.

However, images do contain features. They contain different shapes (lines, circles,
rectangles, and so on), colors (red, blue, orange, yellow, and so on), and specific
characteristics related to different types of objects (hair, wheel, leaves, and so on).
Our eyes and brain can easily analyze and interpret all these features and identify
objects in images. Therefore, we need to simulate the same analytical process for
computers. This is where image filters (also called kernels) come into play.

110 | Image Classification with Convolutional Neural Networks (CNNs)

Image filters are small matrices specialized in detecting a defined pattern. For
instance, we can have a filter for detecting vertical lines only and another one only for
horizontal lines. Computer vision systems run such filters in every part of the image
and generate a new image with the detected patterns highlighted. These kinds of
generated images are called feature maps. An example of a feature map where an
edge-detection filter is used is shown in the following figure:

Figure 3.4: Example of a vertical edge feature map

Such filters are widely used in image processing. If you've used Adobe Photoshop
before (or any other image processing tool), you will have most likely used filters such
as Gaussian and Sharpen.

Convolution Operations

Now that we know the basics of image processing, we can start our journey with
CNNs. As we mentioned previously, computer vision relies on applying filters to an
image to recognize different patterns or features and generate feature maps. But
how are these filters applied to the pixels of an image? You could guess that there is
some sort of mathematical operation behind it, and you would be absolutely right.
This operation is called convolution.

A convolution operation is composed of two stages:

• An element-wise product of two matrices

• A sum of the elements of a matrix

Image Processing | 111

Let's look at an example of how to convolute two matrices, A and B:

Figure 3.5: Examples of matrices

First, we need to perform an element-wise multiplication with matrices A and B. We
will get another matrix, C, as a result, with the following values:

• 1st row, 1st column: 5 × 1 = 5

• 1st row, 2nd column: 10 × 0 = 0

• 1st row, 3rd column: 15 × (-1) = -15

• 2nd row, 1st column: 10 × 2 = 20

• 2nd row, 2nd column: 20 × 0 = 0

• 2nd row, 3rd column: 30 × (-2) = -60

• 3rd row, 1st column: 100 × 1 = 100

• 3rd row, 2nd column: 150 × 0 = 0

• 3rd row, 3rd column: 200 × (-1) = -200

Note

An element-wise multiplication is different from a standard matrix
multiplication, which operates at the row and column level rather than on
each element.

112 | Image Classification with Convolutional Neural Networks (CNNs)

Finally, we just have to perform a sum on all elements of matrix C, which will give us
the following:

5+0-15+20+0-60+100+0-200 = -150

The final result of the entire convolution operation on matrices A and B is -150, as
shown in the following diagram:

Figure 3.6: Sequence of the convolution operation

In this example, Matrix B is actually a filter (or kernel) called Sobel that is used for
detecting vertical lines (there is also a variant for horizontal lines). Matrix A will be a
portion of an image with the same dimensions as the filter (this is mandatory in order
to perform element-wise multiplication).

Note

A filter is, in general, a square matrix such as (3,3) or (5,5).

For a CNN, filters are actually parameters that will be learned (that is, defined) during
the training process. So, the values of each filter that will be used will be set by
the CNN itself. This is an important concept to go through before we learn how to
train a CNN.

Image Processing | 113

Exercise 3.01: Implementing a Convolution Operation

In this exercise, we will use TensorFlow to implement a convolution operation on two
matrices: [[1,2,3],[4,5,6],[7,8,9]] and [[1,0,-1],[1,0,-1],[1,0,-
1]]. Perform the following steps to complete this exercise:

1. Open a new Jupyter Notebook file and name it Exercise 3.01.

2. Import the tensorflow library:

import tensorflow as tf

3. Create a tensor called A from the first matrix,
([[1,2,3],[4,5,6],[7,8,9]]). Print its value:

A = tf.Variable([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

A

The output will be as follows:

<tf.Variable 'Variable:0' shape=(3, 3) dtype=int32,

numpy=array([[1, 2, 3],

 [4, 5, 6],

 [7, 8, 9]])>

4. Create a tensor called B from the first matrix, ([[1,0,-1],[1,0,-
1],[1,0,-1]]). Print its value:

B = tf.Variable([[1, 0, -1], [1, 0, -1], [1, 0, -1]])

B

The output will be as follows:

<tf.Variable 'Variable:0' shape=(3, 3) dtype=int32,

numpy=array([[1, 0, -1],

 [1, 0, -1],

 [1, 0, -1]])>

5. Perform an element-wise multiplication on A and B using tf.math.
multiply(). Save the result in mult_out and print it:

mult_out = tf.math.multiply(A, B)

mult_out

114 | Image Classification with Convolutional Neural Networks (CNNs)

The expected output will be as follows:

<tf.Tensor: id=19, shape=(3, 3), dtype=int32,

numpy=array([[1, 0, -3],

 [4, 0, -6],

 [7, 0, -9]])>

6. Perform an element-wise sum on mult_out using tf.math.reduce_sum().
Save the result in conv_out and print it:

conv_out = tf.math.reduce_sum(mult_out)

conv_out

The expected output will be as follows:

<tf.Tensor: id=21, shape=(), dtype=int32, numpy=-6>

The result of the convolution operation on the two matrices,
[[1,2,3],[4,5,6],[7,8,9]] and [[1,0,-1],[1,0,-1],[1,0,-1]],
is -6.

Note

To access the source code for this specific section, please refer
to https://packt.live/320pEfC.

You can also run this example online at https://packt.live/2ZdeLFr.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we used the built-in functions of TensorFlow to perform a convolution
operation on two matrices.

Stride

So far, we have learned how to perform a single convolution operation. We learned
that a convolution operation uses a filter of a specific size, say, (3, 3), that is, 3 × 3, and
applies it on a portion of the image of a similar size. If we have a large image, let's say
of size (512, 512), then we can just look at a very tiny part of the image.

Taking tiny parts of the image at a time, we need to perform the same convolution
operation on the entire space of a given image. To do so, we will apply a technique
called sliding. As the name implies, sliding is where we apply the filter to an
adjacent area of the previous convolution operation: we just slide the filter and
apply convolution.

https://packt.live/320pEfC
https://packt.live/2ZdeLFr

Image Processing | 115

If we start from the top-left corner of an image, we can slide the filter by one pixel at
a time to the right. Once we get to the right edge, we can slide down the filter by one
pixel. We repeat this sliding operation until we've applied convolution to the entire
space of the image:

Figure 3.7: Example of stride

Rather than sliding by 1 pixel only, we can choose a bigger sliding window, such as 2
or 3 pixels. The parameter defining the value of this sliding window is called stride.
With a bigger stride value, there will be fewer overlapping pixels, but the resulting
feature map will have smaller dimensions, so you will be losing a bit of information.

In the preceding example, we applied a Sobel filter on an image that has been split
horizontally with dark values on the left-hand side and white ones on the right-hand
side. The resulting feature map has high values (800) in the middle, which indicates
that the Sobel filter found a vertical line in that area. This is how sliding convolution
helps to detect specific patterns in an image.

Padding

In the previous section, we learned how a filter can go through all the pixels of an
image with pixel sliding. Combined with the convolution operation, this process helps
to detect patterns (that is, extract features) in an image.

116 | Image Classification with Convolutional Neural Networks (CNNs)

Applying a convolution to an image will result in a feature map that has smaller
dimensions than the input image. A technique called padding can be used in order to
get the exact same dimensions for the feature map as for the input image. It consists
of adding a layer of pixels with a value of 0 to the edge:

Figure 3.8: Example of padding

In the preceding example, the input image has the dimensions (6,6). Once padded,
its dimensions increased to (8,8). Now, we can apply convolution on it with a filter of
size (3,3):

Figure 3.9: Example of padded convolution

Image Processing | 117

The resulting image after convoluting the padded image is (6,6) in terms of its
dimensions, which is the exact same dimensions as for the original input image.
The resulting feature map has high values in the middle of the image, just like the
previous example without padding. So, the filter can still find the same pattern in
the image. But you may notice now that we have very low values (-800) on the left
edge. This is actually fine as lower values mean the filter hasn't found any pattern in
this area.

The following formulas can be used for calculating the output dimensions of a feature
map after a convolution:

Figure 3.10: Formulas for calculating the output dimensions of a feature map

Here, we have the following:

• w: Width of the input image

• h: Height of the input image

• p: Number of pixels used on each side for padding

• f: Filter size

• s: Number of pixels in the stride

Let's apply this formula to the preceding example:

• w = 6

• h = 6

• p = 1

• f = 3

• s = 1

118 | Image Classification with Convolutional Neural Networks (CNNs)

Then, calculate the output dimensions as follows:

Figure 3.11: Output – dimensions of the feature map

So, the dimensions of the resulting feature map are (6,6).

Convolutional Neural Networks
In Chapter 2, Neural Networks, you learned about traditional neural networks, such as
perceptrons, that are composed of fully connected layers (also called dense layers).
Each layer is composed of neurons that perform matrix multiplication, followed by a
non-linear transformation with an activation function.

CNNs are actually very similar to traditional neural networks, but instead of using
fully connected layers, they use convolutional layers. Each convolution layer will have
a defined number of filters (or kernels) that will apply the convolution operation with
a given stride on an input image with or without padding and can be followed by an
activation function.

CNNs are widely used for image classification, where the network will have to predict
the right class for a given input. This is exactly the same as classification problems for
traditional machine learning algorithms. If the output can only be from two different
classes, it will be a binary classification, such as recognizing dogs versus cats. If the
output can be more than two classes, it will be a multi-class classification exercise,
such as recognizing 20 different sorts of fruits.

Convolutional Neural Networks | 119

In order to make such predictions, the last layer of a CNN model needs to be a
fully connected layer with the relevant activation function according to the type of
prediction problem. You can use the following list of activation functions as a rule
of thumb:

Figure 3.12: List of activation functions

To gain a better perspective of its structure, here's what a simple CNN model
looks like:

Figure 3.13: Structure of a simple CNN model

120 | Image Classification with Convolutional Neural Networks (CNNs)

We have learned a lot about CNNs already. There is one more concept we need to go
through in order to reduce the training time of a CNN before jumping into our first
exercise: pooling layers.

Pooling Layers
Pooling layers are used to reduce the dimensions of the feature maps of convolution
layers. But why do we need to perform such downsampling? One of the main reasons
is to reduce the number of calculations that are performed in the networks. Adding
multiple layers of convolution with different filters can have a significant impact on
the training time. Also, reducing the dimensions of feature maps can eliminate some
of the noise in the feature map and help us focus only on the detected pattern. It is
quite typical to add a pooling layer after each convolutional layer in order to reduce
the size of the feature maps.

A pooling operation acts very similarly to a filter, but rather than performing a
convolution operation, it uses an aggregation function such as average or max (max
is the most widely used function in the current CNN architecture). For instance, max
pooling will look at a specific area of the feature map and find the maximum values
of its pixels. Then, it will perform a stride and find the maximum value among the
neighbor pixels. It will repeat this process until it processes the entire image:

Figure 3.14: Max pooling with stride 2 on an input image

In the preceding example, we used a max pooling (which is the most widely used
function for pooling) of size (2, 2) and a stride of 2. We looked at the top-left corner of
the feature map and found the maximum value among the pixels, 6, 8, 1, and 2, and
got a result of 8. Then, we slid the max pooling by a stride of 2 and performed the
same operation on the group of pixels, that is, 6, 1, 7, and 4. We repeated the same
operation on the bottom groups and got a new feature map of size (2,2).

Pooling Layers | 121

A CNN model with max pooling will look like this:

Figure 3.15: Example of the CNN architecture with max pooling

For instance, the preceding model can be used for recognizing handwritten digits
(from 0 to 9). There are three convolution layers in this model, followed by a max
pooling layer. The final layers are fully connected and are responsible for making the
predictions of the digit that's been detected.

The overhead of adding pooling layers is much less than computing convolution.
This is why they will speed up the training time.

CNNs with TensorFlow and Keras

So far, you've learned a lot about how CNN works under the hood. Now, it is finally
time to see how we can implement what we have learned. We will be using the Keras
API from TensorFlow 2.0.

The Keras API provides a high-level API for building your own CNN architecture. Let's
look at the main classes we will be using for CNN.

First, to create a convolution layer, we will need to instantiate a Conv2D() class and
specify the number of kernels, their size, the stride, padding, and activation function:

from tensorflow.keras import layers

layers.Conv2D(64, kernel_size=(3, 3), stride=(2,2), \

 padding="same", activation="relu")

122 | Image Classification with Convolutional Neural Networks (CNNs)

In the preceding example, we have created a convolution layer with 64 kernels
that are (3, 3) in dimension with a stride of 2, a padding to get the same output
dimension as the input (padding='same'), and ReLU as the activation function.

Note

You can learn more about this class by going to TensorFlow's
documentation website: https://www.tensorflow.org/api_docs/python/tf/keras/
layers/Conv2D

In order to add a max pooling layer, you will have to use the MaxPool2D() class and
specify its dimensions and stride, as shown in the following code snippet:

from tensorflow.keras import layers

layers.MaxPool2D(pool_size=(3, 3), strides=1)

In the preceding code snippet, we have instantiated a max pooling layer of size
(3,3) with a stride of 1.

Note

You can learn more about this class by going to TensorFlow's
documentation website: https://www.tensorflow.org/api_docs/python/tf/keras/
layers/MaxPool2D

For a fully connected layer, we will use the Dense() class and specify the number of
units and the activation function:

from tensorflow.keras import layers

layers.Dense(units=1, activation='sigmoid')

The preceding code shows us how to create a fully connected layer that has 1 output
unit and uses sigmoid as the activation function.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D

Pooling Layers | 123

Finally, while manipulating input data, we may have to change its dimensions before
feeding it to a CNN model. If we are using NumPy arrays, we can use the reshape
method (as seen in Chapter 1, Building Blocks of Deep Learning), as follows:

features_train.reshape(60000, 28, 28, 1)

Here, we have transformed the dimension of features_train to (60000, 28,
28, 1), which corresponds to the format (number of observations, height, width,
channel). This is needed when working with grayscale images to add the channel
dimension. In this example, the dimensions of a grayscale image, (28,28), will be
reshaped to (28,28,1), and there will be 60000 images in total.

In TensorFlow, you can use the reshape method as follows:

from tensorflow.keras import layers

layers.Reshape((60000, 28, 28, 1))

Now that we have learned how to design a CNN in TensorFlow, it's time to put this all
into practice on the famous MNIST dataset.

Note

You can learn more about Reshape by going to TensorFlow's
documentation website: https://www.tensorflow.org/api_docs/python/tf/keras/
layers/Reshape

Exercise 3.02: Recognizing Handwritten Digits (MNIST) with CNN Using KERAS

In this exercise, we will be working on the MNIST dataset (which we worked on in
Chapter 2, Neural Networks), which contains images of handwritten digits. However,
this time, we will be using a CNN model. This dataset was originally shared by Yann
Lecun, one of the most renowned deep learning researchers. We will build a CNN
model and then train it to recognize handwritten digits. The CNN will be composed of
two layers of convolution with 64 kernels each, followed by two fully connected layers
that have 128 and 10 units, respectively.

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Reshape

124 | Image Classification with Convolutional Neural Networks (CNNs)

TensorFlow provides this dataset directly from its API. Perform the following steps to
complete this exercise:

Note

You can read more about this dataset on TensorFlow's website:
https://www.tensorflow.org/datasets/catalog/mnist

1. Open a new Jupyter Notebook file and name it Exercise 3.02.

2. Import tensorflow.keras.datasets.mnist as mnist:

import tensorflow.keras.datasets.mnist as mnist

3. Load the mnist dataset using mnist.load_data() and save the results into
(features_train, label_train), (features_test,
label_test):

(features_train, label_train), (features_test, label_test) = \

mnist.load_data()

4. Print the content of label_train:

label_train

The expected output will be as follows:

array([5, 0, 4, ..., 5, 6, 8], dtype=uint8)

The label column contains numeric values that correspond to the 10 handwritten
digits: 0 to 9.

5. Print the shape of the training set:

features_train.shape

The expected output will be as follows:

(60000, 28, 28)

The training set is composed of 60000 observations of shape 28 by 28.

6. Print the shape of the testing set:

features_test.shape

https://www.tensorflow.org/datasets/catalog/mnist

Pooling Layers | 125

The expected output will be as follows:

(10000, 28, 28)

The testing set is composed of 10000 observations of shape 28 by 28.

7. Reshape the training and testing sets with the dimensions (number_
observations, 28, 28, 1):

features_train = features_train.reshape(60000, 28, 28, 1)

features_test = features_test.reshape(10000, 28, 28, 1)

8. Standardize features_train and features_test by dividing them
by 255:

features_train = features_train / 255.0

features_test = features_test / 255.0

9. Import numpy as np, tensorflow as tf, and layers from tensorflow.
keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

10. Set 8 as the seed for numpy and tensorflow using np.random_seed() and
tf.random.set_seed(), respectively:

np.random.seed(8)

tf.random.set_seed(8)

Note

The results may still differ slightly after setting the seeds.

11. Instantiate a tf.keras.Sequential() class and save it to a variable
called model:

model = tf.keras.Sequential()

12. Instantiate a layers.Conv2D() class with 64 kernels of shape (3,3),
activation='relu', and input_shape=(28,28,1), and save it to a
variable called conv_layer1:

conv_layer1 = layers.Conv2D(64, (3,3), activation='relu', \

 input_shape=(28, 28, 1))

126 | Image Classification with Convolutional Neural Networks (CNNs)

13. Instantiate a layers.Conv2D() class with 64 kernels of shape (3,3) and
activation='relu' and save it to a variable called conv_layer2:

Note

It is only required to specify the input_shape parameter for the first
layer. For the following layers, CNN would infer it automatically.

conv_layer2 = layers.Conv2D(64, (3,3), activation='relu')

14. Instantiate a layers.Flatten() class with 128 neurons,
activation='relu', and save it to a variable called fc_layer1:

fc_layer1 = layers.Dense(128, activation='relu')

15. Instantiate a layers.Flatten() class with 10 neurons,
activation='softmax', and save it to a variable called fc_layer2:

fc_layer2 = layers.Dense(10, activation='softmax')

16. Add the four layers you just defined to the model using .add(), add a
MaxPooling2D() layer of size (2,2) in between each of the convolution
layers, and add a Flatten() layer before the first fully connected layer to
flatten the feature maps:

model.add(conv_layer1)

model.add(layers.MaxPooling2D(2, 2))

model.add(conv_layer2)

model.add(layers.MaxPooling2D(2, 2))

model.add(layers.Flatten())

model.add(fc_layer1)

model.add(fc_layer2)

17. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

18. Compile the neural network using .compile() with loss='sparse_
categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy']:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

Pooling Layers | 127

19. Print the summary of the model:

model.summary()

The expected output will be as follows:

Figure 3.16: Summary of the model

The preceding summary shows us that there are more than 240,000 parameters
to be optimized with this model.

20. Fit the neural networks with the training set and specify epochs=5,
validation_split=0.2, and verbose=2:

model.fit(features_train, label_train, epochs=5,\

 validation_split = 0.2, verbose=2)

The expected output will be as follows:

Figure 3.17: Training output

128 | Image Classification with Convolutional Neural Networks (CNNs)

We trained our CNN on 48,000 samples, and we used 12,000 samples as the
validation set. After training for five epochs, we achieved an accuracy score of
0.9951 for the training set and 0.9886 for the validation set. Our model is
overfitting a bit.

21. Let's evaluate the performance of the model on the testing set:

model.evaluate(features_test, label_test)

The expected output will be as follows:

10000/10000 [==============================] - 1s 86us/sample -

loss: 0.0312 - accuracy: 0.9903 [0.03115778577708088, 0.9903]

With this, we've achieved an accuracy score of 0.9903 on the testing set.

Note

To access the source code for this specific section, please refer
to https://packt.live/2W2VLYl.

You can also run this example online at https://packt.live/3iKAVGZ.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we designed and trained a CNN architecture to recognize the
images of handwritten digit images from the MNIST dataset and achieved an almost
perfect score.

Data Generator

In the previous exercise, we built our first multi-class CNN classifier on the MNIST
dataset. We loaded the entire dataset into the model as it wasn't very big. But for
bigger datasets, we will not be able to do this. Thankfully, Keras provides an API
called data generator that we can use to load and transform data in batches.

Data generators are also very useful for image classification. Sometimes, an image
dataset comes in the form of a folder with predefined structures for the training
and testing sets and for the different classes (all images that belong to a class will
be stored in the same folder). The data generator API will be able to understand
this structure and feed the CNN model properly with the relevant images and
corresponding information. This will save you a lot of time as you won't need to
build a custom pipeline to load images from the different folders.

https://packt.live/2W2VLYl
https://packt.live/3iKAVGZ

Pooling Layers | 129

On top of this, data generators can divide the images into batches of images and
feed them sequentially to the model. You don't have to load the entire dataset into
memory in order to perform training. Let's see how they work.

First, we need to import the ImageDataGenerator class from tensorflow.
keras.preprocessing:

from tensorflow.keras.preprocessing.image \

import ImageDataGenerator

Then, we can instantiate it by providing all the image transformations we want it to
perform. In the following example, we will just normalize all the images from the
training set by dividing them by 255 so that all the pixels will have a value between
0 and 1:

train_imggen = ImageDataGenerator(rescale=1./255)

After this step, we will create a data generator by using the .flow_from_
directory() method and will specify the path to the training directory,
batch_size, the target_size of the image, the shuffle, and the type of class:

train_datagen = train_imggen.\

 flow_from_directory(batch_size=32, \

 directory=train_dir, \

 shuffle=True, \

 target_size=(100, 100), \

 class_mode='binary')

Note

You need to create a separate data generator for the validation set.

Finally, we can train our model using the .fit_generator() method by providing
the data generators for the training and validation sets, the number of epochs, and
the number of steps per epoch, which corresponds to the number of images divided
by the batch size (as integer):

model.fit_generator(train_data_gen, \

 steps_per_epoch=total_train // batch_size, \

 epochs=5, validation_data=val_data_gen, \

 validation_steps=total_val // batch_size)

130 | Image Classification with Convolutional Neural Networks (CNNs)

This method is very similar to the .fit() method you saw earlier, but rather than
training the CNN on the entire dataset in one go, it will train by batches of images
using the data generator we defined. The number of steps defines how many batches
will be required to process the entire dataset.

Data generators are quite useful for loading data from folders and feeding the model
in batches of images. But they can also perform some data processing, as shown in
the following section.

Exercise 3.03: Classifying Cats versus Dogs with Data Generators

In this exercise, we will be working on the cats versus dogs dataset, which contains
images of dogs and cats. We will build two data generators for the training and
validation sets and a CNN model to recognize images of dogs or cats. Perform the
following steps to complete this exercise:

Note

The dataset we'll be using is a modified version from the Kaggle cats versus
dogs dataset: https://www.kaggle.com/c/dogs-vs-cats/data.The modified
version, which only uses a subset of 25,000 images, has been provided
by Google at https://storage.googleapis.com/mledu-datasets/cats_and_dogs_
filtered.zip.

1. Open a new Jupyter Notebook file and name it Exercise 3.03.

2. Import the tensorflow library:

import tensorflow as tf

3. Create a variable called file_url containing the link to the dataset:

file_url = 'https://github.com/PacktWorkshops'\

 '/The-Deep-Learning-Workshop/raw/master'\

 '/Chapter03/Datasets/Exercise3.03'\

 '/cats_and_dogs_filtered.zip'

https://www.kaggle.com/c/dogs-vs-cats/data
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip

Pooling Layers | 131

Note

In the aforementioned step, we are using the dataset stored at
https://packt.live/3jZKRNw. If you have stored the dataset at any other URL,
please change the highlighted path accordingly. Watch out for the slashes in
the string below. Remember that the backslashes (\) are used to split the
code across multiple lines, while the forward slashes (/) are part of
the URL.

4. Download the dataset using tf.keras.get_file with 'cats_and_dogs.
zip', origin=file_url, extract=True as parameters and save the
result to a variable called zip_dir:

zip_dir = tf.keras.utils.get_file('cats_and_dogs.zip', \

 origin=file_url, extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the cats_and_dogs_
filtered directory using pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'cats_and_dogs_filtered'

7. Create two variables called train_dir and validation_dir that take the
full paths to the train and validation folders, respectively:

train_dir = path / 'train'

validation_dir = path / 'validation'

8. Create four variables called train_cats_dir, train_dogs_dir,
validation_cats_dir, and validation_dogs_dir that take the full
paths to the cats and dogs folders for the train and validation sets, respectively:

train_cats_dir = train_dir / 'cats'

train_dogs_dir = train_dir /'dogs'

validation_cats_dir = validation_dir / 'cats'

validation_dogs_dir = validation_dir / 'dogs'

9. Import the os package. We will need this in the next step in order to count the
number of images from a folder:

import os

https://packt.live/3jZKRNw

132 | Image Classification with Convolutional Neural Networks (CNNs)

10. Create two variables called total_train and total_val that will get the
number of images for the training and validation sets:

total_train = len(os.listdir(train_cats_dir)) \

 + len(os.listdir(train_dogs_dir))

total_val = len(os.listdir(validation_cats_dir)) \

 + len(os.listdir(validation_dogs_dir))

11. Import ImageDataGenerator from tensorflow.keras.
preprocessing:

from tensorflow.keras.preprocessing.image\

import ImageDataGenerator

12. Instantiate two ImageDataGenerator classes and call them train_image_
generator and validation_image_generator. These will rescale the
images by dividing them by 255:

train_image_generator = ImageDataGenerator(rescale=1./255)

validation_image_generator = ImageDataGenerator(rescale=1./255)

13. Create three variables called batch_size, img_height, and img_width
that take the values 16, 100, and 100, respectively:

batch_size = 16

img_height = 100

img_width = 100

14. Create a data generator called train_data_gen using .flow_from_
directory() and specify the batch size, the path to the training folder,
shuffle=True, the target size as (img_height, img_width), and the
class mode as binary:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, directory=train_dir, \

 shuffle=True, \

 target_size=(img_height, img_width), \

 class_mode='binary')

15. Create a data generator called val_data_gen using .flow_from_
directory() and specify the batch size, paths to the validation folder,
shuffle=True, the target size as (img_height, img_width), and the
class mode as binary:

Pooling Layers | 133

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, \

 directory=validation_dir, \

 target_size=(img_height, img_width), \

 class_mode='binary')

16. Import numpy as np, tensorflow as tf, and layers from tensorflow.
keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

17. Set 8 (this is totally arbitrary) as the seed for numpy and tensorflow using
np.random_seed() and tf.random.set_seed(), respectively:

np.random.seed(8)

tf.random.set_seed(8)

18. Instantiate a tf.keras.Sequential() class into a variable called model
with the following layers: A convolution layer with 64 kernels of shape 3,
ReLU as the activation function, and the required input dimensions; a max
pooling layer; a convolution layer with 128 kernels of shape 3 and ReLU as the
activation function; a max pooling layer; a flatten layer; a fully connected layer
with 128 units and ReLU as the activation function; a fully connected layer with
1 unit and sigmoid as the activation function.

The code will look as follows:

model = tf.keras.Sequential([

 layers.Conv2D(64, 3, activation='relu', \

 input_shape=(img_height, img_width ,3)),\

 layers.MaxPooling2D(),\

 layers.Conv2D(128, 3, activation='relu'),\

 layers.MaxPooling2D(),\

 layers.Flatten(),\

 layers.Dense(128, activation='relu'),\

 layers.Dense(1, activation='sigmoid')])

19. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

134 | Image Classification with Convolutional Neural Networks (CNNs)

20. Compile the neural network using .compile() with loss='binary_
crossentropy', optimizer=optimizer, metrics=['accuracy']:

model.compile(loss='binary_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

21. Print a summary of the model using .summary():

model.summary()

The expected output will be as follows:

Figure 3.18: Summary of the model

The preceding summary shows us that there are more than 8,700,000
parameters to be optimized with this model.

22. Fit the neural networks with fit_generator() and provide the train
and validation data generators, epochs=5, the steps per epoch, and the
validation steps:

model.fit_generator(train_data_gen, \

 steps_per_epoch=total_train // batch_size, \

 epochs=5, \

 validation_data=val_data_gen,\

 validation_steps=total_val // batch_size)

Data Augmentation | 135

The expected output will be as follows:

Figure 3.19: Training output

Note

The expected output will be close to the one shown. You may have slightly
different accuracy values due to some randomness in weights initialization.

We've trained our CNN for five epochs and achieved an accuracy score of 0.85 for
the training set, and 0.7113 for the validation set. Our model is overfitting quite a
lot. You may want to try the training with different architectures to see whether you
can improve this score and reduce overfitting. You can also try feeding this model
with some images of cats or dogs of your choice and see the output predictions.

Note

To access the source code for this specific section, please refer
to https://packt.live/31XQmp9.

You can also run this example online at https://packt.live/2ZW10tW.
You must execute the entire Notebook in order to get the desired result.

Data Augmentation
In the previous section, you were introduced to data generators that can do a lot of
the heavy lifting, such as feeding the model from folders rather than columnar data
for you regarding data processing for neural networks. So far, we have seen how
to create them, load data from a structured folder, and feed the model by batch.
We only performed one image transformation with it: rescaling. However, data
generators can perform many more image transformations.

https://packt.live/31XQmp9
https://packt.live/2ZW10tW

136 | Image Classification with Convolutional Neural Networks (CNNs)

But why do we need to perform data augmentation? The answer is quite simple: to
prevent overfitting. By performing data augmentation, we are increasing the number
of images in a dataset. For one image, we can generate, for instance, 10 different
variants of the same image. So, the size of your dataset will be multiplied by 10.

Also, with data augmentation, we have a set of images with a broader range of
visuals. For example, selfie pictures can be taken from different angles, but if your
dataset only contains selfie pictures that are straight in terms of their orientation,
your CNN model will not be able to interpret other images with different angles
correctly. By performing data augmentation, you are helping your model generalize
better to different types of images. However, as you may have guessed, there is one
drawback: data augmentation will also increase the training time as you have to
perform additional data transformations.

Let's take a quick look at some of the different types of data argumentation that we
can do.

Horizontal Flipping

Horizontal flipping returns an image that is flipped horizontally:

Figure 3.20: Example of horizontal flipping

Data Augmentation | 137

Vertical Flipping

Vertical flipping will flip an image vertically:

Figure 3.21: Example of vertical flipping

Zooming

An image can be zoomed in and provide different sizes of objects in the image:

Figure 3.22: Example of zooming

138 | Image Classification with Convolutional Neural Networks (CNNs)

Horizontal Shifting

Horizontal shifting, as its name implies, will shift the image along the horizontal axis
but keep it the same size. With this transformation, the image may be cropped, and
new pixels need to be generated to fill the void. A common technique is to copy the
neighboring pixels or to fill that space with black pixels:

Figure 3.23: Example of horizontal shifting

Vertical Shifting

Vertical shifting is similar to horizontal shifting, but along the vertical axis:

Figure 3.24: Example of vertical shifting

Data Augmentation | 139

Rotating

A rotation with a particular angle can be performed on an image like so:

Figure 3.25: Example of rotating

Shearing

Shearing transforms the image by moving one of the edges along the axis of the
edge. After doing this, the image distorts from a rectangle to a parallelogram:

Figure 3.26: Example of shearing

140 | Image Classification with Convolutional Neural Networks (CNNs)

With Keras, all these data transformation techniques can be added to
ImageDataGenerator:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

ImageDataGenerator(rescale=1./255, \

 horizontal_flip=True, zoom_range=0.2, \

 width_shift_range=0.2, \

 height_shift_range=0.2, \

 shear_range=0.2, rotation_range=40, \

 fill_mode='nearest')

Now that we have a general understanding of data argumentation, let's look at how
to implement it in our models in the following exercise.

Exercise 3.04: Image Classification (CIFAR-10) with Data Augmentation

In this exercise, we will be working on the CIFAR-10 dataset (Canadian Institute for
Advanced Research), which is composed of 60,000 images of 10 different classes:
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. We will build
a CNN model and use data augmentation to recognize these categories. Perform the
following steps to complete this exercise:

Note

You can read more about this dataset on TensorFlow's website:
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10.

1. Open a new Jupyter Notebook file and name it Exercise 3.04.

2. Import tensorflow.keras.datasets.cifar10:

from tensorflow.keras.datasets import cifar10

3. Load the CIFAR-10 dataset using cifar10.load_data() and save the results
to (features_train, label_train), (features_test, label_
test):

(features_train, label_train), (features_test, label_test) = \

cifar10.load_data()

https://www.tensorflow.org/api_docs/python/tf/keras/datasets/cifar10

Data Augmentation | 141

4. Print the shape of features_train:

features_train.shape

The expected output will be as follows:

 (50000, 32, 32, 3)

The training set is composed of 50000 images that have the dimensions
(32,32,3).

5. Create three variables called batch_size, img_height, and img_width
that take the values 16, 32, and 32, respectively:

batch_size = 16

img_height = 32

img_width = 32

6. Import ImageDataGenerator from tensorflow.keras.
preprocessing:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

7. Create an ImageDataGenerator instance called train_img_gen with data
augmentation: rescaling (by dividing by 255), width_shift_range=0.1,
height_shift_range=0.1, and horizontal flipping:

train_img_gen = ImageDataGenerator\

 (rescale=1./255, width_shift_range=0.1, \

 height_shift_range=0.1, horizontal_flip=True)

8. Create an ImageDataGenerator instance called val_img_gen with
rescaling (by dividing by 255):

val_img_gen = ImageDataGenerator(rescale=1./255)

9. Create a data generator called train_data_gen using the .flow() method
and specify the batch size, features, and labels from the training set:

train_data_gen = train_img_gen.flow\

 (features_train, label_train, \

 batch_size=batch_size)

142 | Image Classification with Convolutional Neural Networks (CNNs)

10. Create a data generator called val_data_gen using the .flow() method and
specify the batch size, features, and labels from the testing set:

val_data_gen = train_img_gen.flow\

 (features_test, label_test, \

 batch_size=batch_size)

11. Import numpy as np, tensorflow as tf, and layers from tensorflow.
keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

12. Set 8 as the seed for numpy and tensorflow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

13. Instantiate a tf.keras.Sequential() class into a variable called model
with the following layers: a convolution layer with 64 kernels of shape 3, ReLU
as the activation function, and the necessary input dimensions; a max pooling
layer; a convolution layer with 128 kernels of shape 3 and ReLU as the activation
function; a max pooling layer; a flatten layer; a fully connected layer with 128
units and ReLU as the activation function; a fully connected layer with 10 units
and Softmax as the activation function.

The code will be as follows:

model = tf.keras.Sequential([

 layers.Conv2D(64, 3, activation='relu', \

 input_shape=(img_height, img_width ,3)), \

 layers.MaxPooling2D(), \

 layers.Conv2D(128, 3, activation='relu'), \

 layers.MaxPooling2D(), \

 layers.Flatten(), \

 layers.Dense(128, activation='relu'), \

 layers.Dense(10, activation='softmax')])

14. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

Data Augmentation | 143

15. Compile the neural network using .compile() with loss='sparse_
categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy']:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

16. Fit the neural networks with fit_generator() and provide the train
and validation data generators, epochs=5, the steps per epoch, and the
validation steps:

model.fit_generator(train_data_gen, \

 steps_per_epoch=len(features_train) \

 // batch_size, \

 epochs=5, \

 validation_data=val_data_gen, \

 validation_steps=len(features_test) \

 // batch_size)

The expected output will be as follows:

Figure 3.27: Training logs for the model

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZLyQk.

You can also run this example online at https://packt.live/2OcmahS.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/31ZLyQk
https://packt.live/2OcmahS

144 | Image Classification with Convolutional Neural Networks (CNNs)

In this exercise, we trained our CNN on five epochs, and we achieved an accuracy
score of 0.6713 on the training set and 0.6582 on the validation set. Our model
is overfitting slightly, but its accuracy score is quite low. You may wish to try this on
different architectures to see whether you can improve this score by, for instance,
adding more convolution layers.

Note

The expected output for the preceding exercise will be close to the one
shown (Figure 3.27). You may have slightly different accuracy values due to
some randomness in weights initialization.

Activity 3.01: Building a Multiclass Classifier Based on the Fashion

MNIST Dataset

In this activity, you will train a CNN to recognize images of clothing that belong to
10 different classes. You will apply some data augmentation techniques to reduce
the risk of overfitting. You will be using the Fashion MNIST dataset provided by
TensorFlow. Perform the following steps to complete this activity:

Note

The original dataset was shared by Han Xiao. You can read more about this
dataset on TensorFlow's website here: https://www.tensorflow.org/datasets/
catalog/mnist

1. Import the Fashion MNIST dataset from TensorFlow.

2. Reshape the training and testing sets.

3. Create a data generator with the following data augmentation:

rescale=1./255,

rotation_range=40,

width_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.2,

zoom_range=0.2,

https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist

Saving and Restoring Models | 145

horizontal_flip=True,

fill_mode='nearest'

4. Create the neural network architecture with the following layers: A convolutional
layer with Conv2D(64, (3,3), activation='relu') followed by
MaxPooling2D(2,2); a convolutional layer with Conv2D(64, (3,3),
activation='relu') followed by MaxPooling2D(2,2); a flatten layer;
a fully connected layer with Dense(128, activation=relu); a fully
connected layer with Dense(10, activation='softmax').

5. Specify an Adam optimizer with a learning rate of 0.001.

6. Train the model.

7. Evaluate the model on the testing set.

The expected output will be as follows:

Figure 3.28: Training logs for the model

The expected accuracy scores should be around 0.82 for the training and
validation sets.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 394.

Saving and Restoring Models
In the previous section, we learned how we can use data augmentation to generate
different variants of an image. This will increase the size of the dataset but will also
help the model train on a wider variety of images and help it generalize better.

146 | Image Classification with Convolutional Neural Networks (CNNs)

Once you've trained your model, you will most likely want to deploy it in production
and use it to make live predictions. To do so, you will need to save your model as a
file. This file can then be loaded by your prediction service so that it can be used as an
API or data science tool.

There are different components of a model that can be saved:

• The model's architecture with all the network and layers used

• The model's trained weights

• The training configuration with the loss function, optimizer, and metrics

In TensorFlow, you can save the entire model or each of these components
separately. Let's learn how to do this.

Saving the Entire Model

To save all the components into a single artifact, use the following code:

model.save_model(filepath='path_to_model/cnn_model')

To load the saved model, use the following code:

loaded_model = tf.keras.models.load_model\

 (filepath='path_to_model/cnn_model')

Saving the Architecture Only

You can save just the architecture of the model as a json object. Then, you will need
to use the json package to save it to a file, as shown in the following code snippet:

import json

config_json = model.to_json()

with open('config.json', 'w') as outfile:

 json.dump(config_json, outfile)

Then, you will load it back using the json package:

import json

with open('config.json') as json_file:

 config_data = json.load(json_file)

loaded_model = tf.keras.models.model_from_json(config_data)

Transfer Learning | 147

Saving the Weights Only

You can save just the weights of the model as follows:

model.save_weights('path_to_weights/weights.h5')

Then, you will load them back after instantiating the architecture of your new model:

new_model.load_weights('path_to_weights/weights.h5')

This is particularly useful if you want to train your model even more later. You
will load the saved weights and keep training your model and updating its
weights further.

Note

.h5 is the file extension used by default by TensorFlow.

Transfer Learning
So far, we've learned a lot about designing and training our own CNN models. But as
you may have noticed, some of our models are not performing very well. This can be
due to multiple reasons, such as the dataset being too small or our model requiring
more training.

But training a CNN takes a lot of time. It would be great if we could reuse an existing
architecture that has already been trained. Luckily for us, such an option does exist,
and it is called transfer learning. TensorFlow provides different implementations of
state-of-the-art models that have been trained on the ImageNet dataset (over 14
million images).

Note

You can find the list of available pretrained models in the TensorFlow
documentation: https://www.tensorflow.org/api_docs/python/tf/keras/
applications

https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications

148 | Image Classification with Convolutional Neural Networks (CNNs)

To use a pretrained model, we need to import its implemented class. Here, we will be
importing a VGG16 model:

import tensorflow as tf

from tensorflow.keras.applications import VGG16

Next, we will define the input dimensions of the images from our dataset. Let's say we
have images of (100,
100, 3):

img_dim = (100, 100, 3)

Then, we will instantiate a VGG16 model:

base_model = VGG16(input_shape=img_dim, \

 weights='imagenet', include_top=True)

Now, we have a VGG16 model trained on the ImageNet dataset. The include_
top=True parameter is used to specify that we will be using the same last layers to
predict ImageNet's 20,000 categories of images.

Now, we can use this pretrained model to make predictions:

base_model.predict(input_img)

But what if we want to use this pretrained model to predict different classes other
than the ones from ImageNet? In this situation, we will need to replace the last fully
connected layers of the pretrained models that are used for prediction and train
them on the new classes. These last few layers are referred to as the top (or head) of
the model. We can do this by specifying include_top=False:

base_model = VGG16(input_shape=img_dim, \

 weights='imagenet', include_top=False)

After this, we will need to freeze this model so that it can't be trained (that is, its
weights will not be updated):

base_model.trainable = False

Then, we will create a new fully connected layer with the parameter of our
choice. In this example, we will add a Dense layer with 20 units and a softmax
activation function:

prediction_layer = tf.keras.layers.Dense(20, activation='softmax')

Fine-Tuning | 149

We will then add the new fully connected layer to our base model:

new_model = tf.keras.Sequential([base_model, prediction_layer])

Finally, we will train this model, but only the weights for the last layer will be updated:

optimizer = tf.keras.optimizers.Adam(0.001)

new_model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

new_model.fit(features_train, label_train, epochs=5, \

 validation_split = 0.2, verbose=2)

We just created a new model from a pretrained model and adapted it in order to
make predictions for our own dataset. We achieved this by replacing the last layers
according to the predictions we want to make. Then, we trained only these new layers
to make the right predictions. Using transfer learning, you leveraged the existing
weights of the VGG16 model, which were trained on ImageNet. This has saved you a
lot of training time and can significantly increase the performance of your model.

Fine-Tuning
In the previous section, we learned how to apply transfer learning and use pretrained
models to make predictions on our own dataset. With this approach, we froze the
entire network and trained only the last few layers that were responsible for making
the predictions. The convolutional layers stay the same, so all the filters are set in
advance and you are just reusing them.

But if the dataset you are using is very different from ImageNet, these pretrained
filters may not be relevant. In this case, even using transfer learning will not help your
model accurately predict the right outcomes. There is a solution for this, which is to
only freeze a portion of the network and train the rest of the model rather than just
the top layers, just like we do with transfer learning.

In the early layers of the networks, the filters tend to be quite generic. For instance,
you may find filters that detect horizontal or vertical lines at that stage. The filters
closer to the end of the network (close to the top or head) are usually more specific to
the dataset you are training on. So, these are the ones we want to retrain. Let's learn
how we can achieve this in TensorFlow.

First, let's instantiate a pretrained VGG16 model:

base_model = VGG16(input_shape=img_dim, \

 weights='imagenet', include_top=False)

150 | Image Classification with Convolutional Neural Networks (CNNs)

We will need to set the threshold for the layers so that they're frozen. In this example,
we will freeze the first 10 layers:

frozen_layers = 10

Then, we will iterate through these layers and freeze them individually:

for layer in base_model.layers[:frozen_layers]:

 layer.trainable = False

Then, we will add our custom fully connected layer to our base model:

prediction_layer = tf.keras.layers.Dense(20, activation='softmax')

new_model = tf.keras.Sequential([base_model, prediction_layer])

Finally, we will train this model:

optimizer = tf.keras.optimizers.Adam(0.001)

new_model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

new_model.fit(features_train, label_train, epochs=5, \

 validation_split = 0.2, verbose=2)

In this case, our model will train and update all the weights from the threshold layer
we defined. They will use the pretrained weights as the initialized values for the
first iteration.

With this technique, called fine-tuning, you can still leverage pretrained models by
partially training them to fit your dataset.

Activity 3.02: Fruit Classification with Transfer Learning

In this activity, we will train a CNN to recognize images of fruits that belong to 120
different classes. We will use transfer learning and data augmentation to do so.
We will be using the Fruits 360 dataset (https://arxiv.org/abs/1712.00580), which was
originally shared by Horea Muresan, Mihai Oltean, Fruit recognition from images using
deep learning, Acta Univ. Sapientiae, Informatica Vol. 10, Issue 1, pp. 26-42, 2018.

It contains more than 82,000 images of 120 different types of fruits. We will be using
a subset of this dataset with more than 16,000 images. Perform the following steps to
complete this activity:

https://arxiv.org/abs/1712.00580

Fine-Tuning | 151

Note

The dataset can be found here: https://packt.live/3gEjHsX

1. Import the dataset and unzip the file using TensorFlow.

2. Create a data generator with the following data augmentation:

rescale=1./255,

rotation_range=40,

width_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True,

fill_mode='nearest'

3. Load a pretrained VGG16 model from TensorFlow.

4. Add two fully connected layers on top of VGG16: A fully connected layer with
Dense(1000, activation='relu') and a fully connected layer with
Dense(120, activation='softmax').

5. Specify an Adam optimizer with a learning rate of 0.001.

6. Train the model.

7. Evaluate the model on the testing set.

The expected accuracy scores should be around 0.89 to 0.91 for the training and
validation sets. The output will be similar to this:

Figure 3.29: Expected output of the activity

https://packt.live/3gEjHsX

152 | Image Classification with Convolutional Neural Networks (CNNs)

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 398.

Summary
We started our journey in this chapter with an introduction to computer vision and
image processing, where we learned the different applications of such technology,
how digital images are represented, and analyzed this with filters.

Then, we dived into the basic elements of CNN. We learned what a convolution
operation is, how filters work in detecting patterns, and what stride and padding
are used for. After understanding these building blocks, we learned how to use
TensorFlow to design CNN models. We built our own CNN architecture to recognize
handwritten digits.

After this, we went through data generators and learned how they can feed our
model with batches of images rather than loading the entire dataset. We also learned
how they can perform data augmentation transformations to expand the variety of
images and help the model generalize better.

Finally, we learned about saving a model and its configuration, but also about how to
apply transfer learning and fine-tuning. These techniques are very useful for reusing
pretrained models and adapting them to your own projects and datasets. This will
save you a lot of time as you won't have to train the model from scratch.

In the next chapter, you will learn about another very interesting topic that is used for
natural language processing: embeddings.

Overview

In this chapter, we will begin our foray into Natural Language Processing
for text. We will start by using the Natural Language Toolkit to perform
text preprocessing on raw text data, where we will tokenize the raw text and
remove punctuations and stop words. As we progress through this chapter,
we will implement classical approaches to text representation, such as
one-hot encoding and the TF-lDF approach. This chapter demonstrates the
power of word embeddings and explains the popular deep learning-based
approaches for embeddings. We will use the Skip-gram and Continuous
Bag of Words algorithms to generate our own word embeddings. We will
explore the properties of the embeddings, the different parameters of the
algorithms, and generate vectors for phrases. By the end of this chapter,
you will be able to handle text data and start using word embeddings by
using pre-trained models, as well as your own embeddings.

Deep Learning for Text –

Embeddings

4

156 | Deep Learning for Text – Embeddings

Introduction
How does Siri know exactly what to do when you ask her to "play a mellow song from
the 80s"? How does Google find the most relevant results for even your ill-formed
search queries in a fraction of a second? How does your translation app translate text
from German to English almost instantly? How does your email client protect you and
automatically identify all those malicious spam/phishing emails? The answer to all
these questions, and what powers many more amazing applications, is using Natural
Language Processing (NLP).

So far, we've dealt with structured, numeric data – images that were also numeric
matrices. In this chapter, we'll begin our discussion by talking about handling
text data and unlock the skills needed to harness this goldmine of unstructured
information. We will discuss a key idea in this chapter – representation, particularly
using embeddings. We will discuss the considerations and implement the approaches
for representation. We will begin with the simplest approaches and end with word
embeddings – an amazingly powerful approach for representing text data. Word
embeddings will help you get state-of-the-art results in NLP tasks when coupled with
deep learning approaches.

NLP is a field concerned with helping machines make sense of natural (human)
language. As shown in the following figure, NLP resides at the intersection of
linguistics, computer science, and artificial intelligence:

Figure 4.1: Where NLP fits

Introduction | 157

It is a vast field – think of all the places language (spoken and written) is used. NLP
enables and powers the kind of applications listed in the preceding figure, including
the following:

• Classification of documents into categories (text classification)

• Translation between languages, say, German to English (sequence-to-
sequence learning)

• Automatically classifying the sentiment of a tweet or a movie review
(sentiment analysis)

• Chatbots that reply to your query instantly, 24/7

Before we go any further, we need to acknowledge and appreciate that NLP isn't easy.
Consider the following sentence: "The boy saw a man with a telescope."

Who had the telescope? Did the boy use a telescope to see the man through it? Or
was the man carrying a telescope with him? There is an ambiguity that we can't
resolve with this sentence alone. Maybe some more context will help us figure
this out.

Let's consider this sentence, then: "Rahim convinced Mohan to buy a television for
himself." Who was the TV bought for – Rahim or Mohan? This is another case of
ambiguity that we may be able to resolve with more context, but again, it may be very
difficult for a machine/program.

Let's consider another example: "Rahim has quit skydiving." This sentence implies
that Rahim did a fair amount of skydiving. There is a presupposition in this sentence,
which is hard for a machine to infer.

Language is a complex system that uses symbols (words/terms) and combines them
in many ways to communicate ideas. Making sense of language is not always very
easy, and there are many reasons for this. Ambiguity is by far the biggest reason:
words can have different meanings in different contexts. Add to that subtext,
different perspectives, and so on. We can never be sure if the same words are
understood the same way by different people. A poem can be interpreted in many
ways by those who read it, where each reader brings their unique perspective and
understanding of the world and employs them to make sense of the poem in their
own way.

158 | Deep Learning for Text – Embeddings

Deep Learning for Natural Language Processing
The emergence of deep learning has had a strong positive impact on many fields,
and NLP is no exception. By now, you can appreciate that deep learning approaches
have given us accuracies like never before, and this has helped us improve in many
areas. There are several tasks in NLP that have gained tremendously from deep
learning approaches. Applications that use sentiment prediction, machine translation,
and chatbots previously required a lot of manual intervention. With deep learning
and NLP, these tasks are completely automated and bring with them impressive
performance. The simple, high-level view shown in Figure 4.2 shows how deep
learning can be used for processing natural language. Deep learning provides us with
not only great representations of natural language that machines can understand but
also very powerful modeling approaches well suited for tasks in NLP.

Figure 4.2: Deep learning for NLP

That being said, we need to be cautious to avoid underestimating the difficulty of
getting machines to perform tasks involving human language and the field of NLP.
Deep learning hasn't solved all of the challenges in NLP, but it has indeed caused
a paradigm shift in the way several tasks in NLP are approached and has helped
advance some applications in this field, making otherwise difficult tasks accessible
and easy for anyone and everyone. We will perform some of these in Chapter 5, Deep
Learning for Sequences.

One such key task is text data representation – which is, in simple terms, converting
raw text into something a model would understand. Word embeddings constitute a
deep learning-based approach that has changed the game and gives a very powerful
representation of text. We'll discuss embeddings in detail and create our own
embeddings later in this chapter. First, let's get our hands dirty by working with some
text and performing some very important data preparation.

Deep Learning for Natural Language Processing | 159

Getting Started with Text Data Handling

Let's get some test data into Python to begin. First, we'll create some toy data of our
own and get familiar with the tools. Then, we'll use Lewis Carrol's classic work, "Alice's
Adventures in Wonderland", which is available through Project Gutenberg (gutenberg.
org). Conveniently enough, we have this easily accessible through the Natural
Language ToolKit (NLTK), a great library for performing NLP from scratch.

Note

The code implementations for this chapter can be found at
https://packt.live/3gEgkSP. All the code in this chapter must be run
in a single Jupyter Notebook.

NLTK should come with the Anaconda distribution. If not, you can install NLTK by
using the following command in the command line:

pip install nltk

This should work on Windows. For macOS and Linux, you can use the
following command:

$ sudo pip install -U nltk

Our dummy data can be created using the following command (we're using Jupyter
Notebooks here; feel free to use any interface):

raw_txt = """Welcome to the world of Deep Learning for NLP! \

 We're in this together, and we'll learn together. \

 NLP is amazing, \

 and Deep Learning makes it even more fun. \

 Let's learn!"""

We have the text in raw_txt, which is a string variable, so now, we're ready to
start processing it.

Text Preprocessing

Text preprocessing refers to the process of getting the text data ready for your
primary analysis/model. Regardless of your end goal – which could be sentiment
analysis, classification, clustering, or any of the many others – you need to get
your raw text data cleaned up and ready for analysis. This is the first part of any
application involving NLP.

http://gutenberg.org
http://gutenberg.org
https://packt.live/3gEgkSP

160 | Deep Learning for Text – Embeddings

What do we mean by clean up, and when is the text data ready? We know that the
text data we encounter in our day-to-day lives can be very messy (think about social
media, product reviews, service reviews, and so on) and has various imperfections.
Depending on the task at hand and the kind of data you're dealing with, the
imperfections you care about will vary, and cleaning up can mean very different
things. As an example, in some applications, preprocessing could just mean "dividing
the sentences into individual terms." The steps you take here can and will have an
impact on the final outcome of your analysis. Let's discuss this in more detail.

Tokenization

The first step in preprocessing is inevitably tokenization – splitting the raw input text
sequence into tokens. In simple terms, it is breaking the raw text into constituent
elements that you want to work on. This token can be a paragraph, sentence, word,
or even a character. If you want to separate a paragraph into sentences, then you
would tokenize the paragraph into sentences. If you want to separate the words in a
sentence, then you would tokenize the sentence into words.

For our raw text, first, we want to separate the sentences. To do so, we have multiple
options in Python – here, we'll use the tokenize API in NLTK.

Note

We'll be using Jupyter Notebooks throughout this book, which is something
that we recommend. However, feel free to use any IDE you wish.

Before we can use the API, we have to import nltk and download the punkt
sentence tokenizer. Then, we need to import the tokenize library. All this can be
done using the following commands:

import nltk

nltk.download('punkt')

from nltk import tokenize

The tokenize API has utilities to extract different levels of tokens (sentences, words,
or characters) for different types of data (a very handy tweet tokenizer, too). We'll use
the sent_tokenize() method here. The sent_tokenize() method breaks
input text into constituent sentences. Let's see it in action:

tokenize.sent_tokenize(raw_txt)

Deep Learning for Natural Language Processing | 161

This should give us the following individual sentences:

['Welcome to the world of Deep Learning for NLP!',

 "We're in this together, and we'll learn together.",

 'NLP is amazing, and Deep Learning makes it even more fun.',

 "Let's learn!"]

Looking at the output, it seems like sent_tokenize() is doing a pretty good job. It
has correctly identified the sentence boundaries and given us the four sentences, as
expected. Let's assign the result to a variable for ease of handling and let's check the
data type of the result and its constituents:

txt_sents = tokenize.sent_tokenize(raw_txt)

type(txt_sents), len(txt_sents)

The following is the output of the preceding code:

(list, 4)

As we can see, it's a list with four elements, where each element contains the
sentence as a string.

We can try breaking sentences into individual words using the word_tokenize()
method. This method breaks a given sentence into its constituent words. It
uses smart rules to figure out word boundaries. Let's use list comprehension
(comprehensions in Python are a concise approach to constructing new sequences)
for a bit for convenience:

txt_words = [tokenize.word_tokenize(sent) for sent in txt_sents]

type(txt_words), type(txt_words[0])

The preceding command gives us the following output:

(list, list)

The output is as expected – the elements of the resulting list are lists themselves,
containing the words that form the sentence. Let's also print out the first two
elements of the result:

print(txt_words[:2])

The output would be as follows:

[['Welcome', 'to', 'the', 'world', 'of',

 'Deep', 'Learning', 'for', 'NLP', '!'],

 ['We', "'re", 'in', 'this', 'together',

 ',', 'and', 'we', "'ll", 'learn', 'together', '.']]

162 | Deep Learning for Text – Embeddings

The sentences have been broken into individual words. We can also see that
contractions like "we'll" have been broken into constituents, that is, "we" and "'ll". All
punctuation (commas, periods, exclamation marks, and so on) are separate tokens.
This is very convenient for us if we wish to remove them, which we will do later.

Normalizing Case

Another common step is to normalize case – we usually don't want "car", "CAR", "Car",
and "caR" to be treated as separate entities. To do so, we typically convert all text into
lowercase (we could also convert it into uppercase if we wanted).

All strings in Python have a lower() method to them, so converting a string variable
(strvar) into lowercase is as simple as strvar.lower().

Note

We could have used this right in the beginning, before tokenization, and it
would have been as simple as raw_txt = raw_txt.lower().

We will normalize the case of our data using the lower() method after tokenizing
into individual sentences. We'll accomplish this with the following commands:

txt_sents = [sent.lower() for sent in txt_sents]

txt_words = [tokenize.word_tokenize(sent) for sent in txt_sents]

Let's print out a couple of sentences to see what the result looks like:

print(txt_words[:2])

The output will be as follows:

[['welcome', 'to', 'the', 'world', 'of',

 'deep', 'learning', 'for', 'nlp', '!'],

 ['we', "'re", 'in', 'this', 'together',

 ',', 'and', 'we', "'ll", 'learn', 'together', '.']]

We can see that the output has all the terms in lowercase this time. We've taken the
raw text, broken it into sentences, normalized the case, and then broken that down
into words. Now, we have all the tokens that we need, but we still seem to have a
lot of punctuation marks as tokens that we need to get rid of. Let's go ahead and
perform more "cleanup".

Deep Learning for Natural Language Processing | 163

Removing Punctuation

We can see that the data currently has all punctuation as separate tokens. Again,
bear in mind that there could be tasks where punctuations could be important. As
an example, when performing sentiment analysis, that is, predicting if the sentiment
in the text is positive or negative, an exclamation can add value. For our task, let's
remove these since we're only interested in representing the terms of language. To
do so, we need to have a list of all the punctuation marks we want to remove. Luckily,
we have such a list in the string base library in Python, which we can simply import
and assign to a list variable:

from string import punctuation

list_punct = list(punctuation)

print(list_punct)

You should get the following output:

['!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',',

 '-', '.', '/', ':', ';', '<', '=', '>', '?', '@',

 '[', '\\', ']', '^', '_', '`', '{', '|', '}', '~']

All the usual punctuation marks are available here. If there are any additional
punctuation marks you want to remove, you can simply add them to the list_
punct variable.

We can define a function to remove punctuation from a given list of tokens. This
function will expect a list of tokens, from which it will drop the tokens that are
available in the list_punct variable:

def drop_punct(input_tokens):

 return [token for token in input_tokens \

 if token not in list_punct]

We can test this out on some dummy tokens using the following command:

drop_punct(["let",".","us",".","go","!"])

We get the following result:

['let', 'us', 'go']

164 | Deep Learning for Text – Embeddings

The function works as intended. Now, we need to pass the txt_words variable we
modified in the previous section to the drop_punct function we just created. We
will store our result in a new variable called txt_words_nopunct:

txt_words_nopunct = [drop_punct(sent) for sent in txt_words]

print(txt_words_nopunct)

We will get the following output:

[['welcome', 'to', 'the', 'world', 'of',

 'deep', 'learning', 'for', 'nlp'],

 ['we', "'re", 'in', 'this', 'together', 'and',

 'we', "'ll", 'learn', 'together'],

 ['nlp', 'is', 'amazing', 'and',

 'deep', 'learning', 'makes', 'it', 'even', 'more', 'fun'],

 ['let', "'s", 'learn']]

As you can see from the preceding output, the function we created has removed all
the punctuation marks from our raw text. Now, the data looks much cleaner without
the punctuation, but we still need to get rid of non-informative terms. We'll discuss
that in the next section.

Removing Stop Words

In day-to-day language, we have a lot of terms that don't add a lot of information/
value*. These are typically referred to as "stop words". We can think of these as
belonging to two broad categories:

1. General/functional: These are filler words in the language that don't provide
a lot of information but help stitch together other informative words to form
meaningful sentences, such as "the", "an", "of", and so on.

Deep Learning for Natural Language Processing | 165

2. Contextual: These aren't general functional terms, but given the context, don't
add a lot of value. If you're working with reviews of a mobile phone, where all
reviews are talking about the phone, the term "phone" itself may not add a lot
of information.

Note

*The notion of "value" changes with each task. Functional words such
as "the" and "and" may not be important for, say, automatic document
categorization into subjects, but can be very important for other
applications, such as part-of-speech tagging (identifying verbs, adjectives,
nouns, pronouns, and so on).

Functional stop words are conveniently built into NLTK. We just need to import them
and then we can store them in a variable. Once stored, they can be accessed just like
any Python list. Let's import them and see how many of these words we have:

import nltk

nltk.download("stopwords")

from nltk.corpus import stopwords

list_stop = stopwords.words("english")

len(list_stop)

We will see the following output:

179

We can see that we have 179 built-in stop words. Let's also print some of them:

print(list_stop[:50])

166 | Deep Learning for Text – Embeddings

The output will be as follows:

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves',

 'you', "you're", "you've", "you'll", "you'd", 'your',

 'yours', 'yourself', 'yourselves', 'he', 'him', 'his',

 'himself', 'she', "she's", 'her', 'hers', 'herself',

 'it', "it's", 'its', 'itself', 'they', 'them',

 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom',

 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are',

 'was', 'were', 'be']

We can see that most of these terms are very commonly used "filler" terms that have
a "functional" role in the language, and don't add a lot of information.

Now, removing stop words can be done the same way we removed punctuation.

Exercise 4.01: Tokenizing, Case Normalization, Punctuation, and Stop

Word Removal

In this exercise, we will remove stop words from the data, and also apply everything
we have learned so far. We'll start by performing tokenization (sentences and
words); then, we'll perform case normalization, followed by punctuation and stop
word removal.

Note

Before commencing this exercise, ensure that you are using a Jupyter
Notebook where you have downloaded both the punkt sentence
tokenizer and the stopwords corpus, as demonstrated in the Text
Preprocessing section.

We'll keep the code concise this time. We'll be defining and manipulating the
raw_txt variable. Let's get started:

1. Run the following commands to import nltk and the tokenize module
from it:

import nltk

from nltk import tokenize

Deep Learning for Natural Language Processing | 167

2. Define the raw_txt variable so that it contains the text "Welcome to the
world of deep learning for NLP! We're in this together,
and we'll learn together. NLP is amazing, and deep
learning makes it even more fun. Let's learn!":

raw_txt = """Welcome to the world of deep learning for NLP! \

 We're in this together, and we'll learn together. \

 NLP is amazing, \

 and deep learning makes it even more fun. \

 Let's learn!"""

3. Use the sent_tokenize() method to separate the raw text into individual
sentences and store the result in a variable. Use the lower() method to
convert the string into lowercase before tokenizing:

txt_sents = tokenize.sent_tokenize(raw_txt.lower())

Note

The txt_sents variable we've just created will be used later on in the
chapter as well.

4. Using list comprehension, apply the word_tokenize() method to separate
each sentence into its constituent words:

txt_words = [tokenize.word_tokenize(sent) for sent in txt_sents]

5. Import punctuation from the string module and convert it into a list:

from string import punctuation

stop_punct = list(punctuation)

6. Import the built-in stop words for English from NLTK and save them in a variable:

from nltk.corpus import stopwords

stop_nltk = stopwords.words("english")

7. Create a combined list that contains the punctuations as well as the NLTK stop
words. Note that we can remove them together in one go:

stop_final = stop_punct + stop_nltk

168 | Deep Learning for Text – Embeddings

8. Define a function that will remove stop words and punctuation from the input
sentence, provided as a collection of tokens:

def drop_stop(input_tokens):

 return [token for token in input_tokens \

 if token not in stop_final]

9. Remove redundant tokens by applying the function to the tokenized sentences
and store the result in a variable:

txt_words_nostop = [drop_stop(sent) for sent in txt_words]

10. Print the first cleaned-up sentence from the data:

print(txt_words_nostop[0])

With the stop words removed, the result will look like this:

['welcome', 'world', 'deep', 'learning', 'nlp']

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we performed all the cleanup steps we've learned about so far. This
time around, we combined certain steps and made the code more concise. These
are some very common steps that we should apply when dealing with text data. You
could try to further optimize and modularize by defining a function that returns the
result after all the processing steps. We encourage you to try it out.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

Deep Learning for Natural Language Processing | 169

So far, the steps in the cleanup process were steps that got rid of tokens that weren't
very useful in our assessment. But there are a few more things we could do to
make our data even better – we can try using our understanding of the language to
combine tokens, identify tokens that have practically the same meaning, and
remove further redundancy. A couple of popular approaches are stemming
and lemmatization.

Note

The variables we have created in this exercise will be used in later sections
of the chapter as well. Ensure that you're completing this exercise first
before moving to the upcoming exercises and activities.

Stemming and Lemmatization

"Eat", "eats", "eating", "ate" – aren't they all just variations of the same word, all
referring to the same action? In most text and spoken language, in general, we have
multiple forms of the same word. Typically, we don't want these to be considered as
separate tokens. A search engine would need to return similar results if the query
is "red shoes" or "red shoe"– it would be a terrible search experience otherwise.
We acknowledge that such cases are very common and that we need a strategy to
handle such cases. But what should we do with the variants of a word? A reasonable
approach is to map them all to a common token so that they are all treated the same.

170 | Deep Learning for Text – Embeddings

Stemming is a rule-based approach to achieve normalization by reducing a word to
its "stem". The stem is the root of the word before any affixes (an element added to
make a variant) are added. This approach is rather simple – chop off the suffix to get
the stem. A popular algorithm is the Porter stemming algorithm, which applies a
series of such rules:

Figure 4.3: Examples of the Porter stemming algorithm's rule-based approach

Note

The full set of Porter stemming algorithm rules can be found at
http://snowball.tartarus.org/algorithms/porter/stemmer.html.

Let's look at the Porter stemming algorithm in action. Let's import the
PorterStemmer function from the 'stem' module in NLTK and create an instance
of it:

from nltk.stem import PorterStemmer

stemmer_p = PorterStemmer()

Note that the stemmer works on individual tokens, not sentences as a whole. Let's
see how the stemmer stems the word "driving":

print(stemmer_p.stem("driving"))

The output will be as follows:

drive

Let's see how we can apply this to a whole sentence. Note that we will have to
tokenize the sentence:

txt = "I mustered all my drive, drove to the driving school!"

http://snowball.tartarus.org/algorithms/porter/stemmer.html

Deep Learning for Natural Language Processing | 171

The following code is used for tokenizing the sentence and applying the stemmer to
each term:

tokens = tokenize.word_tokenize(txt)

print([stemmer_p.stem(word) for word in tokens])

The output is as follows:

['I', 'muster', 'all', 'my', 'drive', ',', 'drove', 'to',

 'the', 'drive', 'school', '!']

We can see that the stemmer has correctly reduced "mustered" to "muster" and
"driving" to "drive", while "drove" is untouched. Also, note that the result of a
stemmer need not be a valid English word.

Lemmatization is a more sophisticated approach that refers to a dictionary and finds
a valid root form (the lemma) of the word. Lemmatization works best when the part
of speech of the word is also provided – it considers the role the term is playing and
returns the appropriate form. The output from a lemmatization step is always a valid
English word. However, lemmatization is computationally very expensive, and for it
to work well, it needs the part-of-speech tag, which typically isn't available in the data.
Let's have a brief look at it. First, let's import WordNetLemmatizer from nltk.
stem and instantiate it:

nltk.download('wordnet')

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

Let's apply the lemmatizer on the term ponies:

lemmatizer.lemmatize("ponies")

The following is the output:

'pony'

For our discussions, stemming is sufficient. The result from stemming may not always
be a valid word. For example, poni is the stem for ponies but isn't a valid English
word. Also, there may be some inaccuracies, but for the objective of mapping to a
common word, this crude method works just fine.

172 | Deep Learning for Text – Embeddings

Exercise 4.02: Stemming Our Data

In this exercise, we will continue with data preprocessing. We removed the stop
words and punctuation in the previous exercise. Now, we will use the Porter
stemming algorithm to stem the tokens. Since we'll be using the txt_words_
nostop variable we created previously, let's continue with the same Jupyter
Notebook we created in Exercise 4.01, Tokenizing, Case Normalization, Punctuation,
and Stop Word Removal. The variable, at this point, will contain the following text:

[['welcome', 'world', 'deep', 'learning', 'nlp'],

 ["'re", 'together', "'ll", 'learn', 'together'],

 ['nlp', 'amazing', 'deep', 'learning', 'makes', 'even', 'fun'],

 ['let', "'s", 'learn']]

The following are the steps to complete this exercise:

1. Import PorterStemmer from NLTK using the following command:

from nltk.stem import PorterStemmer

2. Instantiate the stemmer:

stemmer_p = PorterStemmer()

3. Apply the stemmer to the first sentence in txt_words_nostop:

print([stemmer_p.stem(token) for token in txt_words_nostop[0]])

When we print the result, we get the following output:

['welcom', 'world', 'deep', 'learn', 'nlp']

We can see that welcome has been changed to welcom and learning to
learn. This is consistent with the rules of the Porter stemming algorithm.

4. Apply the stemmer to all the sentences in the data. You could use loops, or a
nested list comprehension:

txt_words_stem = [[stemmer_p.stem(token) for token in sent] \

 for sent in txt_words_nostop]

5. Print the output using the following command:

txt_words_stem

Deep Learning for Natural Language Processing | 173

The output will be as follows:

[['welcom', 'world', 'deep', 'learn', 'nlp'],

 ["'re", 'togeth', "'ll", 'learn', 'togeth'],

 ['nlp', 'amaz', 'deep', 'learn', 'make', 'even', 'fun'],

 ['let', "'s", 'learn']]

It looks like plenty of modifications have been made by the stemmer. Many of the
words aren't valid anymore but are still recognizable, and that's okay.

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we used the Porter stemming algorithm to stem the terms of our
tokenized data. Stemming works on individual terms, so it needs to be applied after
tokenizing into terms. Stemming reduced some terms to their base form, which
weren't necessarily valid English words.

Beyond Stemming and Lemmatization

Beyond stemming and lemmatization, there are many specific approaches to handle
word variations. We have techniques such as phonetic hashing to identify spelling
variations of a word induced by pronunciations. Then, there is spelling correction to
identify and rectify errors in spelling. Another potential step is abbreviation handling
so that television and TV are treated the same. The result from these steps can be
further augmented by performing domain-specific term handling. You get the drift…
there are a lot of steps possible, and, depending on your data and the criticality of
your application, you may include some of these in your processing.

In general, though, the steps we performed together are largely sufficient – case
normalization, tokenization, stop word, and punctuation removal, followed by
stemming/lemmatization. These are some common steps that most NLP
applications include.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

174 | Deep Learning for Text – Embeddings

Downloading Text Corpora Using NLTK

So far, we've performed these steps on dummy data that we created. Now, it's time
to try out our newly acquired skills on a larger and more authentic text. First, let's
acquire that text – Lewis Carrol's classic work, "Alice's Adventures in Wonderland",
which is available through Project Gutenberg and accessible through NLTK.

You may need to download the 'gutenberg' corpus through NLTK. First, import
NLTK using the following command:

import nltk

Then, use the nltk.download() command to open up an app, that is, the NLTK
Downloader interface (shown in the following screenshot):

nltk.download()

We can see that the app has multiple tabs. Click the Corpora tab:

Figure 4.4: NLTK Downloader

Deep Learning for Natural Language Processing | 175

In the Corpora tab, scroll down until you reach gutenberg. If the status is not
installed, go ahead and click the Download button in the lower-left corner. That
should install the gutenberg corpus:

Figure 4.5: NLTK Downloader's Corpora tab

Close the interface. Now, you can access some classic texts right from NLTK. We'll
read in the text and store it in a variable:

alice_raw = nltk.corpus.gutenberg.raw('carroll-alice.txt')

The text is stored in alice_raw, which is one big character string. Let's have a look
at the first few characters of this string:

alice_raw[:800]

176 | Deep Learning for Text – Embeddings

The output will be as follows:

"[Alice's Adventures in Wonderland by Lewis Carroll 1865]

 \n\nCHAPTER I. Down the Rabbit-Hole\n\nAlice was beginning

 to get very tired of sitting by her sister on the\nbank,

 and of having nothing to do: once or twice she had peeped

 into the\nbook her sister was reading, but it had no pictures

 or conversations in\nit, 'and what is the use of a book,'

 thought Alice 'without pictures or\nconversation?'

 \n\nSo she was considering in her own mind

 (as well as she could, for the\nhot day made her feel

 very sleepy and stupid), whether the pleasure\nof making

 a daisy-chain would be worth the trouble of getting up

 and\npicking the daisies, when suddenly a White Rabbit

 with pink eyes ran\nclose by her.\n\nThere was nothing

 so VERY remarkable in that; nor did Alice think

 it so\nVERY much out of the way to hear the Rabbit"

We can see the raw text in the output, which contains the usual imperfections that we
expect – varying case, stop words, punctuation, and so on.

We're ready. Let's test out our skills through an activity.

Activity 4.01: Text Preprocessing of the 'Alice in Wonderland' Text

In this activity, you will apply all the preprocessing steps you've learned about so far
to a much larger, real text. We'll work with the text for Alice in Wonderland that we
stored in the alice_raw variable:

alice_raw[:800]

The text currently looks like this:

"[Alice's Adventures in Wonderland by Lewis Carroll 1865]

 \n\nCHAPTER I. Down the Rabbit-Hole\n\nAlice was beginning

 to get very tired of sitting by her sister on the\nbank,

 and of having nothing to do: once or twice she had peeped

 into the\nbook her sister was reading, but it had no pictures

 or conversations in\nit, 'and what is the use of a book,'

 thought Alice 'without pictures or\nconversation?

 '\n\nSo she was considering in her own mind

 (as well as she could, for the\nhot day made her feel

 very sleepy and stupid), whether the pleasure\nof making

Deep Learning for Natural Language Processing | 177

 a daisy-chain would be worth the trouble of getting up

 and\npicking the daisies, when suddenly a White Rabbit

 with pink eyes ran\nclose by her.\n\nThere was nothing

 so VERY remarkable in that; nor did Alice think

 it so\nVERY much out of the way to hear the Rabbit"

By the end of this activity, you will have cleaned and tokenized the data, removed
a lot of imperfections, removed stop words and punctuation, and have applied
stemming on the data.

Note

Before beginning this activity, make sure you have the gutenberg corpus
installed and the alice_raw variable created, as shown in the previous
section titled Downloading Text Corpora Using NLTK.

The following are the steps you need to perform:

1. Continuing in the same Jupyter Notebook, use the raw text in the 'alice_raw'
variable. Change the raw text to lowercase.

2. Tokenize the sentences.

3. Import punctuation from the string module and the stop words from NLTK.

4. Create a variable holding the contextual stop words, that is, -- and said.

5. Create a master list for stop words to remove that contain terms from
punctuation, NLTK stop words and contextual stop words.

6. Define a function to drop these tokens from any input sentence (tokenized).

7. Use the PorterStemmer algorithm from NLTK to perform stemming on
the result.

8. Print out the first five sentences from the result.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 405.

178 | Deep Learning for Text – Embeddings

The expected output looks like this:

[['alic', "'s", 'adventur', 'wonderland', 'lewi', 'carrol',

 '1865', 'chapter', 'i.', 'rabbit-hol', 'alic', 'begin',

 'get', 'tire', 'sit', 'sister', 'bank', 'noth', 'twice',

 'peep', 'book', 'sister', 'read', 'pictur', 'convers',

 "'and", 'use', 'book', 'thought', 'alic', "'without",

 'pictur', 'convers'],

 ['consid', 'mind', 'well', 'could', 'hot', 'day', 'made',

 'feel', 'sleepi', 'stupid', 'whether', 'pleasur', 'make',

 'daisy-chain', 'would', 'worth', 'troubl', 'get', 'pick',

 'daisi', 'suddenli', 'white', 'rabbit',

 'pink', 'eye', 'ran', 'close'],

 ['noth', 'remark', 'alic', 'think', 'much', 'way', 'hear',

 'rabbit', 'say', "'oh", 'dear'],

 ['oh', 'dear'],

 ['shall', 'late']]

Let's take a look at what we have achieved so far and what lies ahead.

So far, we've learned how to perform text preprocessing – the process of getting
the text data ready for our primary analysis/model. We started with raw text data
that has, potentially, many imperfections. We learned how to handle many of these
imperfections and are now at a juncture where we are comfortable with handling text
data and getting it ready for further analysis. This is an important first part in any NLP
application. So, we took raw text data and got clean data in return. What's next?

The next section is a very important one since it has a very strong bearing on the
quality of your analysis. It is known as representation. Let's discuss it.

Text Representation Considerations

We have processed our raw input data into cleaned text. Now, we need to transform
this cleaned text into something a predictive model understands. But what does a
predictive model understand? Does it understand the different words? Does it read a
word as we do? Can it work with the text that we supply to it?

Classical Approaches to Text Representation | 179

By now, you understand that models work on numbers. The input to a model is a
stream of numbers. It doesn't understand images, but it can work with matrices and
numbers representing those images. For handling images, the key idea is to convert
them into numbers and generate features out of them. The idea is the same for text:
we need to convert the text into numbers, which will act as features for the model.

Representation is all about converting the text into numbers/features that the
model understands. Doesn't sound like there is much to it, right? If you think that,
then here's something for you to consider: input features are very important for any
modeling exercise, and representation is the process of creating those features. It
has a very significant effect on the outcome of your model and is a process that you
should pay a great deal of attention to.

How do you go about text representation, then? What's the "best" way to represent
text, if there is such a thing at all? Let's discuss a few approaches.

Classical Approaches to Text Representation
Text representation approaches have evolved significantly over the years, and the
advent of neural networks and deep neural networks has made a significant impact
on the way we now represent text (more on that later). We have come a long way
indeed: from handcrafting features to marking if a certain word is present in the text,
to creating powerful representations such as word embeddings. While there are a lot
of approaches, some more suitable for the task than the others, we will discuss a few
major classical approaches and work with all of them in Python.

One-Hot Encoding

One-hot encoding is, perhaps, one of the most intuitive approaches toward text
representation. A one-hot encoded feature for a word is a binary indicator of the
term being present in the text. It's a simple approach that is easy to interpret – the
presence or absence of a word. To understand this better, let's consider our sample
text before stemming, and let's see how one-hot encoding works for a particular term
of interest, say, nlp.

Let's see what the text currently looks like using the following command:

txt_words_nostop

180 | Deep Learning for Text – Embeddings

We can see that the text looks like this:

[['welcome', 'world', 'deep', 'learning', 'nlp'],

 ["'re", 'together', "'ll", 'learn', 'together'],

 ['nlp', 'amazing', 'deep', 'learning', 'makes', 'even', 'fun'],

 ['let', "'s", 'learn']]

Our word of interest is nlp. Here's what the one-hot encoded feature for it would
look like:

Figure 4.6: One-hot encoded feature for 'nlp'

We can see that the feature is 1, but only for the sentences where the term nlp is
present and is 0 otherwise. We can make such indicator variables for each word
that we're interested in. So, if we're interested in three terms, we make three
such features:

Figure 4.7: One-hot encoded features for 'nlp', 'deep', and 'learn'

Let's recreate this using Python in an exercise.

Classical Approaches to Text Representation | 181

Exercise 4.03: Creating One-Hot Encoding for Our Data

In this exercise, we will replicate the preceding example. The target terms are nlp,
deep, and learn. We will create a one-hot encoded feature for these terms using
our own function and store the result in a numpy array.

Again, we'll be using the txt_words_nostop variable we created in Exercise 4.01,
Tokenizing, Case Normalization, Punctuation, and Stop Word Removal. So, you will
need to continue this exercise in the same Jupyter Notebook. Follow these steps to
complete this exercise:

1. Print out the txt_words_nostop variable to see what we're working with:

print(txt_words_nostop)

The output will be as follows:

[['welcome', 'world', 'deep', 'learning', 'nlp'],

 ["'re", 'together', "'ll", 'learn', 'together'],

 ['nlp', 'amazing', 'deep', 'learning', 'makes', 'even', 'fun'],

 ['let', "'s", 'learn']]

2. Define a list with the target terms, that is, "nlp", "deep", "learn":

target_terms = ["nlp","deep","learn"]

3. Define a function that takes in a single tokenized sentence and returns a 0 or 1
for each target term, depending on its presence in the text. Note that the length
of the output is fixed at 3:

def get_onehot(sent):

 return [1 if term in sent else 0 for term in target_terms]

We're iterating over the target terms and checking if they're available in the
input sentence.

4. Apply the function to each sentence in our text and store the result in a variable:

one_hot_mat = [get_onehot(sent) for sent in txt_words_nostop]

5. Import numpy, create a numpy array from the result, and print it:

import numpy as np

np.array(one_hot_mat)

182 | Deep Learning for Text – Embeddings

The array's output is as follows:

array([[1, 1, 0],

 [0, 0, 1],

 [1, 1, 0],

 [0, 0, 1]])

We can see that the output contains four rows, one for each sentence. Each of the
columns in the array contains the one-hot encoding for a target term. The values for
"learn" are 0, 1, 0, 1, which is consistent with our expectations.

Note

To access the source code for this specific section, please refer to
https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how we can generate features from text using one-hot
encoding. The example used a list of target terms. This may work when you have a
very specific objective in mind where we know exactly which terms are useful. Indeed,
this was the method that was heavily employed until a few years ago, where people
handcrafted features from text. In many situations, this is not feasible – since we
don't know exactly which terms are important, we use one-hot encoding for a large
number of terms (5,000, 10,000, or even more).

The other aspect is whether the presence/absence of the term enough for most
situations. Do we not want to include more information? Maybe the frequency of the
term instead of just its presence, or maybe even some other smarter measure? Let's
see how this works.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

Classical Approaches to Text Representation | 183

Term Frequencies

We discussed that one-hot encoding merely indicates the presence or absence of a
term. A reasonable argument here is that the frequency of terms is also important.
It may be that a term that's present more times in a document is more important for
the document. Maybe representing the term by its frequency is a better approach
than simply the indicator. The frequency approach is straightforward – for each term,
count the number of times it appears in a particular text. If a term is absent from the
document/text, it gets a 0. We do this for all the terms in our vocabulary. Therefore,
we have as many features as the number of words in our vocabulary (something we
can choose; this can be thought of as a hyperparameter). We should note that after
the preprocessing steps, the "terms" that we're working with are tokens that may not
be valid words in the language:

Note:

The vocabulary is the superset of all the terms that we'll use in the final
model. Vocabulary size refers to the number of unique terms in the
vocabulary. You could have 20,000 unique terms in the raw text but choose
to work with the most frequent 10,000 terms; this would be the effective
vocabulary size.

184 | Deep Learning for Text – Embeddings

Consider the following image; if we had N documents and had V (t1, t2, t3 … tV)
words in our working vocabulary, the representation for the data would be a matrix
of dimensions N × V.

Figure 4.8: Document-term matrix

This matrix is our Document-Term Matrix (DTM) – where each row represents a
document, and each column represents a term. The values in the cells can represent
some measure (count, or any other measure). We'll work with term frequencies in
this section.

We could create our own function again, but we have a very handy utility called
'CountVectorizer' for this in scikit-learn that we'll use instead. Let's
familiarize ourselves with it, beginning by importing the utility:

from sklearn.feature_extraction.text import CountVectorizer

The vectorizer can work with raw text, as well as tokenized data (as in our case). To
work on the raw text, we would use the following code, where we will create a DTM
with term frequencies from our raw text (txt_sents).

Before we begin, let's take a quick look at the contents of this variable:

txt_sents

Classical Approaches to Text Representation | 185

The output should be as follows:

['welcome to the world of deep learning for nlp!',

 "we're in this together, and we'll learn together.",

 'nlp is amazing, and deep learning makes it even more fun.',

 "let's learn!"]

Note

If the contents of the txt_sents variable have been overwritten while
working on Activity 4.01, Text Preprocessing of the 'Alice in Wonderland'
Text, you can revisit Step 3 of Exercise 4.01, Tokenizing, Case Normalization,
Punctuation, and Stop Word Removal and redefine the variable so that its
contents match the preceding output.

Now, let's instantiate the vectorizer. Note that we need to provide the vocabulary size.
This picks the top n terms from the data for creating the matrix:

vectorizer = CountVectorizer(max_features = 5)

We chose five terms here; the result will contain five columns in the matrix. Let's train
('fit') the vectorizer on the data:

vectorizer.fit(txt_sents)

The vectorizer has now learned a vocabulary – the top five terms – and has created an
index for each term in the vocabulary. Let's have a look at the vocabulary:

vectorizer.vocabulary_

The preceding attribute gives us the following output:

{'deep': 1, 'we': 4, 'together': 3, 'and': 0, 'learn': 2}

We can see which terms have been picked (the top five).

Now, let's apply the vectorizer to the data to create the DTM. A minor detail: the result
from a vectorizer is a sparse matrix. To view it, we'll convert it into an array:

txt_dtm = vectorizer.fit_transform(txt_sents)

txt_dtm.toarray()

186 | Deep Learning for Text – Embeddings

Have a look at the output:

array([[0, 1, 0, 0, 0],

 [1, 0, 1, 2, 2],

 [1, 1, 0, 0, 0],

 [0, 0, 1, 0, 0]], dtype=int64)

The second document (the second row) has a frequency of 2 for the last two terms.
What are those terms? Well, indices 3 and 4 are the terms 'together' and 'we',
respectively. Let's print out the original text to see if the output is as expected:

txt_sents

The output will be as follows:

['welcome to the world of deep learning for nlp!',

 "we're in this together, and we'll learn together.",

 'nlp is amazing, and deep learning makes it even more fun.',

 "let's learn!"]

This is just as we expected, and it looks like the count vectorizer works just fine.

Notice that the vectorizer tokenizes the sentence as well. If you don't want that and
want to use preprocessed tokens instead (txt_words_stem), you simply need to
pass a dummy tokenizer and preprocessor to CountVectorizer. Let's see how
that works. First, we create a function that does nothing and simply returns the
tokenized sentence/document:

def do_nothing(doc):

 return doc

Now, we'll instantiate the vectorizer to use this function as the preprocessor
and tokenizer:

vectorizer = CountVectorizer(max_features=5,

 preprocessor=do_nothing,

 tokenizer=do_nothing)

Here, we're fitting and transforming the data in one step using the fit_
transform() method from the tokenizer, and then we view the result. The method
identifies the unique terms as the vocabulary when fitting on the data, then counts
and returns the occurrence of each term for each document when transforming. Let's
see it in action:

txt_dtm = vectorizer.fit_transform(txt_words_stem)

txt_dtm.toarray()

Classical Approaches to Text Representation | 187

The output array will be as follows:

array([[0, 1, 1, 1, 0],

 [1, 0, 1, 0, 2],

 [0, 1, 1, 1, 0],

 [0, 0, 1, 0, 0]], dtype=int64)

We can see that the output is different from that of the previous result. Is this
difference expected? To understand, let's look at the vocabulary of the vectorizer:

vectorizer.vocabulary_

The output will be as follows:

{'deep': 1, 'learn': 2, 'nlp': 3, 'togeth': 4, "'ll": 0}

We're working with preprocessed data, remember? We have already removed stop
words and stemmed. Let's try printing out the input data just to be sure:

txt_words_stem

The output will be as follows:

[['welcom', 'world', 'deep', 'learn', 'nlp'],

 ["'re", 'togeth', "'ll", 'learn', 'togeth'],

 ['nlp', 'amaz', 'deep', 'learn', 'make', 'even', 'fun'],

 ['let', "'s", 'learn']]

We can see that the DTM is working according to the new vocabulary and the
frequencies that were obtained after preprocessing.

So, this was the second approach of generating features from text data, that is,
using the frequencies of the terms. In the next section, we will look at another very
popular method.

The TF-IDF Method

Does the high frequency of a term in a document mean that the word is very
important for the document? Not really. What if that term is very common in all the
documents? A common assumption that's employed in text data handling is that if a
term is present in all documents, it may not be very differentiating or important for
this particular document at hand. Seems like a reasonable assumption. Once more,
let's consider the example of the term "mobile" when we're working with mobile
phone reviews. The term is likely to be present in a very high proportion of reviews.
But if your task is identifying the sentiment in the reviews, the term may not add a lot
of information.

188 | Deep Learning for Text – Embeddings

We can bump up the importance of terms that are present in the document but rare
in the entire data and decrease the importance of terms that are present in most of
the documents.

The TF-IDF method, which stands for Term Frequency – Inverse Document Frequency,
defines Inverse Document Frequency (IDF) as follows:

Figure 4.9: Equation for TF-IDF

n is the total number of documents, while df(t) is the number of documents where
the term t occurs. This is used as a factor to adjust the term frequency. You can see
that it works just as we want it to – it increases the importance for rare terms, and
decreases it for common terms. Note that there are variations to this formula, but
we'll stick with what scikit-learn uses. Like CountVectorizer, the TF-IDF
vectorizer tokenizes the sentence and learns the vocabulary, but instead of returning
the counts for a term in a document, it returns the adjusted (IDF-multiplied) counts.

Now, let's apply this interesting new approach to our data.

Exercise 4.04: Document-Term Matrix with TF-IDF

In this exercise, we'll implement the third approach to feature generation from text –
TF-IDF. We will use scikit-learn's TfidfVectorizer utility and create the DTM for
our raw text data. Since we're using the txt_sents variable we created earlier in
this chapter, we'll need to use the same Jupyter Notebook. The text contained in the
variable currently looks like this:

['welcome to the world of deep learning for nlp!',

 "we're in this together, and we'll learn together.",

 'nlp is amazing, and deep learning makes it even more fun.',

 "let's learn!"]

Note

If the contents of the txt_sents variable have been overwritten while
working on Activity 4.01, Text Preprocessing of the 'Alice in Wonderland'
Text, you can revisit Step 3 of Exercise 4.01, Tokenizing, Case Normalization,
Punctuation, and Stop Word Removal and redefine the variable so that its
contents match the preceding output.

Classical Approaches to Text Representation | 189

The following are the steps to perform:

1. Import the TfidfVectorizer utility from scikit learn:

from sklearn.feature_extraction.text import TfidfVectorizer

2. Instantiate the vectorizer with a vocabulary size of 5:

vectorizer_tfidf = TfidfVectorizer(max_features=5)

3. Fit the vectorizer on the raw data of txt_sents:

vectorizer_tfidf.fit(txt_sents)

4. Print out the vocabulary learned by the vectorizer:

vectorizer_tfidf.vocabulary_

The trained vocabulary will look as follows:

{'deep': 1, 'we': 4, 'together': 3, 'and': 0, 'learn': 2}

Notice that the vocabulary is the same as that of the count vectorizer. This is
expected. We're not changing the vocabulary; we're adjusting its importance for
the documents.

5. Transform the data using the trained vectorizer:

txt_tfidf = vectorizer_tfidf.transform(txt_sents)

6. Print out the resulting DTM:

txt_tfidf.toarray()

The output will be as follows:

array([[0. , 1. ,

 0. , 0. , 0.],

 [0.25932364, 0. , 0.25932364,

 0.65783832, 0.65783832],

 [0.70710678, 0.70710678, 0. ,

 0. , 0.],

 [0. , 0. , 1. ,

 0. , 0.]])

We can clearly see that the output values are different from the frequencies and
that the values less than 1 indicate that many values have been lowered after
multiplication with IDF.

190 | Deep Learning for Text – Embeddings

7. We also need to see the IDF for each of the terms in the vocabulary to check if
the factor is indeed working as we expect it to. Print out the IDF values for the
terms using the idf_ attribute:

vectorizer_tfidf.idf_

The output will be as follows:

array([1.51082562, 1.51082562, 1.51082562,

 1.91629073, 1.91629073])

The terms 'and', 'deep', and 'learn' have a lower IDF, while the terms
'together' and 'we' have a higher IDF. This is just as we expect it to be – the
terms 'together' and 'we' appear only in one document, while the others
appear in two. So, the TF-IDF scheme is indeed giving more importance to
rarer words.

Note

To access the source code for this specific section, please refer to
https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how we can represent text using the TF-IDF approach. We
also saw how the approach downweighs more frequent terms by noticing that the IDF
values were lower for higher-frequency terms. We ended up with a DTM containing
the TF-IDF values for the terms.

Summarizing the Classical Approaches

We've just looked at three approaches to the classical way of text representation. We
began with one-hot encoding, where the feature for a term was simply marking its
presence in a document. The count/frequency-based approach attempted to add the
importance of the term by using its frequency in a document. The TF-IDF approach
attempted to use a "normalized" importance value of the term, factoring in how
common the term is across the documents.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

Distributed Representation for Text | 191

All three approaches that we've discussed so far fall under the "Bag of Words"
approach to representation. So, why are they called "Bag of Words"? For a couple of
reasons. The first reason is that they don't retain the order of the tokens – once in the
bag, the position of the terms/tokens doesn't matter. The second reason is that this
approach retains features for individual terms. So, for each document, you have, in a
way, a "mixed bag of tokens", or a "bag of words", for simplicity.

The result from all three approaches had a dimensionality of N × V, where N
is the number of documents and V is the vocabulary size. Note that all three
representations are very sparse – a typical sentence is very short (maybe 20 words),
but the vocabulary size is typically in the thousands, resulting in most of the cells
of the DTM being 0. This doesn't seem ideal. Well, there's this and a few more
shortcomings of such representations, which we'll see shortly, that have led to the
success of deep learning-based methods for representation. Let's discuss these
ideas next.

Distributed Representation for Text
Why are word embeddings so popular? Why are we claiming they are amazingly
powerful? What makes them so special? To understand and appreciate word
embeddings, we need to acknowledge the shortcomings of the representations
so far.

The terms "footpath" and "sidewalk" are synonyms. Do you think the approaches
we've discussed so far will be able to capture this information? Well, you could
manually go in and replace "sidewalk" with "footpath" so that both have the same
token eventually, but can you do this for all possible synonyms in the language?

The terms "hot" and "cold" are antonyms. Do the previous Bag-of-Words
representations capture this? What about "dog" being a type of "animal"? "Cockpit"
being a part of a "plane"? Differentiating between a dog's bark and a tree's bark? Can
you handle all these cases manually?

All the preceding are examples of "semantic associations" between the terms
– simply put, their meanings are linked in some way or another. Bag-of-words
representations can't capture these. This is where the notion of distributional
semantics comes in. The key idea of distributional semantics is that terms with similar
distributions have similar meanings.

192 | Deep Learning for Text – Embeddings

A quick, fun quiz for you: Guess the meaning of the term furbaby from the
following text:

"I adopted a young Persian furbaby a month back. Like all furbabys, it loves to scratch its
back and hates water, but unlike other furbabys, it miserably fails at catching a mouse."

You may have guessed it right: furbaby is referring to a cat. This was easy, wasn't it?

But how did you do that? Nowhere has the term cat been used. You looked at the
context (the terms surrounding it) for "furbaby" and, based on your understanding of
language and the world, you figured that these terms are generally associated with
cats. You intuitively used this notion: words with similar meaning appear in similar
contexts. If "furbaby" and "cat" appeared in similar contexts, their meaning must
be similar.

"You shall know a word by the company it keeps."

This famous, and now overused, quote by John Firth captures this idea very well. It's
overused for all the right reasons. Let's see how this notion is employed in
word embeddings.

Word Embeddings and Word Vectors

Word embeddings are representations of each term as a vector with low
dimensionality. The one-hot encoded representation for a term was also a vector,
but with dimensionality in the several thousands. Word embeddings/word vectors
have much lower dimensionality and result from distributional semantics-based
approaches – essentially, the representation captures the notion that words with
similar meanings appear in similar contexts.

Word vectors attempt to capture the meanings of terms. This idea makes them very
powerful, assuming, of course, they have been created correctly. With word vectors,
vector operations such as adding/subtracting vectors and dot products are possible
and have some very interesting meanings. There is also this great property that items
with similar meanings are spatially closer. All of this leads to some amazing results.

A very interesting result is that word vectors can perform well on analogy tasks.
Analogy tasks are defined as tasks of the format – "a is to b as x is to ?" – that is, find
an entity that has the same relation to x as b has to a. As an example, if you ask "man
is to uncle as a woman is to ?", the result would be "aunt" (more on this later). You
can also find out semantic regularities between terms – the relationships between
terms and sets of terms. Let's look at the following figure, which is based on word
vectors/embeddings, to understand this better:

Distributed Representation for Text | 193

Figure 4.10: Semantic relationships between terms

The preceding figure shows some examples. The vectors can have high
dimensionality (up to 300 or even more), so dimensionality reduction to two
dimensions is performed to visualize it. The dotted connection between the two
terms represents the relation between the terms. The direction of this connection is
the important bit. On the left panel, we can see that the segment connecting slow
and slower is parallel to the segment connecting short and shorter. What
does this mean? This means that the word embeddings learned that the relationship
between short and shorter is the same as the relationship between slow and
slower. Likewise, the embeddings learned that the relationship between clearer
and clearest is the same as that between darker and darkest. Pretty
neat, right?

Similarly, the right-hand side of Figure 4.10 shows that the embeddings learned
that the relationship between sir and madam is the same as that between king
and queen. Embeddings have also captured other kinds of semantic associations
between terms, which we discussed in the previous section. Isn't that amazing?

This would not be possible with the approaches we discussed earlier. Word
embeddings truly are working around the "meaning" of terms. We hope you can
already appreciate the utility and power of word vectors. If you're not convinced yet,
we'll soon be working with them and will see this for ourselves.

To generate word embeddings, there are several algorithms we can use. We will
discuss two major approaches and apprise you of some other popular approaches.
We will see how the distributional semantics approach is leveraged to derive these
word embeddings.

194 | Deep Learning for Text – Embeddings

word2vec

Back in school, to test if we understood the meaning of certain terms, our language
teachers used a very popular technique: "fill in the blanks". Based on the words
around it, we needed to identify the word that would best fill that blank. If you
understood the meaning well, you would do well. Think about this – isn't this
distributional semantics?

In the 'furbaby' example, you could predict the term 'cat' because you understood
the contexts and terms it occurs with. The exercise was effectively a "fill-in-the-blank"
exercise. You could fill the blank only because you understood the meaning of 'cat'.

If you can predict a term given some context around it, you understand the meaning
of the term.

This simple idea is exactly the formulation behind the word2vec algorithm. The
word2vec algorithm/process is a prediction exercise, a massive "fill-in-the-blank"
exercise, in a way. In short, this is what the algorithm does:

Given the contextual words, predict the missing target word.

That's all there is to it. The word2vec algorithm predicts the target word given the
context. Let's understand how these are defined.

Consider the sentence, "The Persian cat eats fish and hates bathing." We define context
as some fixed number of the terms to the left and right of the target word, which is in
the center. For our example, let 'cat' be the target word, and let's take two words
on either side of the target as our context:

Figure 4.11: "cat" as the target term

Distributed Representation for Text | 195

The five terms together form a 'window', which has the target term at the center
and the context terms around it. In this example, since we are considering two terms
on either side, the window size is 2 (more on these parameters later). The window is a
sliding one and moves over the terms in the sentence. The next window would have
'eats' at the center, with 'cat' now becoming part of the context:

Figure 4.12: Windows for the target term

C1, C2, C3, and C4 denote the contexts for each window. In C3, "fish" is the target
word, which is predicted using the terms "cat", "eats", "and", and "hates". The
formulation is clear, but how does the model learn the representations? Let's discuss
that next:

Figure 4.13: The CBOW architecture with an example

196 | Deep Learning for Text – Embeddings

The model shown in the preceding figure uses a neural network with a single hidden
layer. The output layer is for the target term and is one-hot encoded with V outputs,
one for each term – the predicted term, which is 'cat', is the term that gets
'hot' in the output, of course. The input layer for the context terms is also size V,
but fires for all the terms in the context. The hidden layer is of dimensionality V x D
(where D is the dimension of the vectors). This hidden layer is where these magical
representations of the terms are learned. Note that there is just one input layer, as
the weights matrix W suggests.

While the network trains, predicting the target word better with each epoch, the
parameters of the hidden layer are also getting updates. These parameters are
effectively D-length vectors for each term. This D-length vector for a term is our word
embedding for that term. After the iterations complete, we would have learned our
word embeddings for all the terms in the vocabulary. Pretty neat, isn't it?

The approach we just discussed is the CBOW approach to training word vectors. The
context is a simple bag of words (as we discussed in the previous section on classical
approaches; order doesn't matter, remember), hence the name. There is another
popular approach, the Skip-gram approach, which inverts the approach of the CBOW
method – it predicts the context words based on the center word. This approach
may seem a little less intuitive initially but works well. We'll discuss the differences
between the results from CBOW and Skip-gram later in this chapter:

Figure 4.14: The Skip-gram architecture

Distributed Representation for Text | 197

Let's see the CBOW approach in action in Python. We'll create our own word
embeddings and assess if we can indeed get the amazing results we have been
claiming so far.

Training Our Own Word Embeddings

There are many implementations of the word2vec algorithm available in different
packages. We will use the implementation in Gensim, which is a great package for
many NLP tasks. The implementation of word2vec in Gensim is close to the original
paper by Mikolov et al. in 2013 (https://arxiv.org/pdf/1301.3781.pdf). Gensim also
supports other algorithms for word embeddings; more on this later.

If you don't have Gensim installed, you can install it by typing the following command
into a Jupyter Notebook:

!pip install gensim

The dataset we'll use is the text8 corpus (http://mattmahoney.net/dc/textdata.html),
which is the first billion characters from Wikipedia. It should, therefore, cover data
from a variety of topics, not specific to one domain. Conveniently, Gensim has a utility
(the downloader API) to read in the data. Let's read in the data after importing the
downloader utility from Gensim:

import gensim.downloader as api

dataset = api.load("text8")

This step downloads the text8 data and can take a while, depending on your
internet connectivity. Alternatively, the data is available here (https://packt.
live/3gKXU2D) to be downloaded and read using the Text8Corpus utility in Gensim,
as shown in the following code:

from gensim.models import word2vec

dataset = word2vec.Text8Corpus("text8")

The text8 data is now available as an iterable, which can simply be passed to the
word2vec algorithm.

Before we train the embeddings, to make the results reproducible, let's set the seed
as 1 for random number generation using NumPy:

np.random.seed(1)

https://arxiv.org/pdf/1301.3781.pdf
http://mattmahoney.net/dc/textdata.html
https://packt.live/3gKXU2D
https://packt.live/3gKXU2D

198 | Deep Learning for Text – Embeddings

Note

Although we have set the seed, there are more causes for variation of
results. Some of this is because of an internal hash seed that the Python
version on your system may use. Using multiple cores can also cause the
results to vary. In any case, while the values you see may be different, and
there could be some changes in the order of the results, the output you
see should largely agree with ours. Note that this applies to all the practical
elements pertaining to word vectors in this chapter.

Now, let's train our first word embedding by using the word2Vec method:

model = word2vec.Word2Vec(dataset)

This may take a minute or two, or less, depending on your system. Once complete,
we will have our trained word vectors in the model and have access to multiple handy
utilities to work with these word vectors. Let's access the word vector/embedding for
a term:

print(model.wv["animal"])

The output will be as follows:

Figure 4.15: The embedding for "animal"

You have a series of numbers – the vector for the term. Let's find the length of
the vector:

len(model.wv["animal"])

The length of the vector is as follows:

100

Distributed Representation for Text | 199

The representation for each term is now a vector of length 100 (the length is a
hyperparameter we can change; we used the default setting to get started). The
vector for any term can be accessed as we did previously. Among the other handy
utilities is the most_similar() method, which helps us find the terms that are the
most similar to a target term. Let's see it in action:

model.wv.most_similar("animal")

The output will be as follows:

[('insect', 0.7598186135292053),

 ('animals', 0.729228138923645),

 ('aquatic', 0.6679497957229614),

 ('insects', 0.6522265672683716),

 ('organism', 0.6486647725105286),

 ('mammal', 0.6478426456451416),

 ('eating', 0.6435647010803223),

 ('ants', 0.6415578722953796),

 ('humans', 0.6414449214935303),

 ('feces', 0.6313734650611877)]

The output is a list of tuples, with each tuple containing the term and its similarity
score with the term "animal".

We can see insect, animals, insects, and mammal in the top-most similar
terms to "animal". This seems like a very good result, right? But how is the similarity
being calculated? Words are being represented by vectors, and the vectors are trying
to capture meaning – the similarity between terms is the similarity between their
corresponding vectors. The most_similar() method uses cosine similarity
between the vectors and returns the terms with the highest values. The value
corresponding to each term in the result is the cosine similarity with the target
word's vector.

Cosine similarity measures are suitable here as we expect terms that are similar in
meaning to be spatially together. Cosine similarity is the cosine of the angle between
the vectors. Terms with similar meaning and representation will have an angle closer
to 0 and a similarity score closer to 1, whereas terms with completely unrelated
meanings will have an angle closer to 90, and a cosine similarity closer to 0. Let's see
what the model has learned as top terms related to "happiness":

model.wv.most_similar("happiness")

200 | Deep Learning for Text – Embeddings

The most similar items turn out to be the following (the most similar ones are at
the top):

[('humanity', 0.7819231748580933),

 ('perfection', 0.7699881792068481),

 ('pleasure', 0.7422512769699097),

 ('righteousness', 0.7402842044830322),

 ('desires', 0.7374188899993896),

 ('dignity', 0.7189303040504456),

 ('goodness', 0.7103697657585144),

 ('fear', 0.7047020196914673),

 ('mankind', 0.7046756744384766),

 ('salvation', 0.6990150213241577)]

Humanity, mankind, goodness, righteousness, and compassion -- we have some life
lessons here. It seems to have learned what many people seemingly can't figure out
in their entire lifetime. Remember, it is just a series of matrix multiplications.

Semantic Regularities in Word Embeddings

We mentioned earlier that these representations capture regularities in language and
are good at solving simple analogy tasks. The offsets between vector embeddings
seem to capture the analogical relationship between words. So, for example, "king"
- "man" + "woman" is expected to result in "queen". Let's see if the model that we
trained on the text8 corpus also understands some regularities.

We'll use the most_similar() method here, which allows us to add and subtract
vectors from each other. We'll provide 'king' and 'woman' as vectors to add to
each other, use 'man' to subtract from the result, and then check out the five terms
that are the most similar to the resulting vector:

model.wv.most_similar(positive=['woman', 'king'], \

 negative=['man'], topn=5)

The output will be as follows:

[('queen', 0.6803990602493286),

 ('empress', 0.6331825852394104),

 ('princess', 0.6145625114440918),

 ('throne', 0.6131302714347839),

 ('emperor', 0.6064509153366089)]

Distributed Representation for Text | 201

The top result is 'queen'. Looks like the model is capturing these regularities. Let's
try out another example. "Man" is to "uncle" as "woman" is to ? Or in an arithmetic
form, what is the vector closest to uncle - man + woman = ?

model.wv.most_similar(positive=['uncle', 'woman'], \

 negative=['man'], topn=5)

The following is the output of the preceding code:

[('aunt', 0.8145735263824463),

 ('grandmother', 0.8067640066146851),

 ('niece', 0.7993890643119812),

 ('wife', 0.7965766787528992),

 ('widow', 0.7914236187934875)]

This seems to be working great. Notice that all the top five results are for the feminine
gender. So, we took uncle, removed the masculine elements, added feminine
elements, and now we have some really good results.

Let's look at some other examples of vector arithmetic. We can take vectors for two
different terms and average them to arrive at vectors for a phrase as well. Let's try it
for ourselves.

Note

Taking the average of individual vectors is just one of the many ways of
arriving at phrase vectors. Variations range from weighted averages to more
complex mathematical functions.

Exercise 4.05: Vectors for Phrases

In this exercise, we will begin to create vectors for two different phrases, get happy
and make merry, by taking the average of the individual vectors. We will find a
similarity between the representations for the phrases. You will need to continue this
exercise in the same Jupyter Notebook we have been using throughout this chapter.
Follow these steps to complete this exercise:

1. Extract the vector for the term "get" and store it in a variable:

v1 = model.wv['get']

202 | Deep Learning for Text – Embeddings

2. Extract the vector for the term "happy" and store it in a variable:

v2 = model.wv['happy']

3. Create a vector as the element-wise average of the two vectors, (v1 + v2)/2.
This is our vector for the entire phrase "get happy":

res1 = (v1+v2)/2

4. Similarly, extract vectors for the terms "make" and "merry":

v1 = model.wv['make']

v2 = model.wv['merry']

5. Create a vector for the phrase by averaging the individual vectors:

res2 = (v1+v2)/2

6. Using the cosine_similarities() method in the model, find the cosine
similarity between the two:

model.wv.cosine_similarities(res1, [res2])

The cosine similarity comes out as follows:

array([0.5798107], dtype=float32)

The result is a cosine similarity of about 0.58, which is positive and much higher
than 0. This means that the model thinks the phrases "get happy" and "make merry"
are similar in meaning. Not bad, right? Instead of a simple average, we could use
weighted averages, or come up with more sophisticated methods of combining
individual vectors.

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how we could use vector arithmetic to represent phrases,
instead of individual terms, and we saw that meaning is still captured. This brings us
to a very important lesson – vector arithmetic on word embeddings has meaning.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

Distributed Representation for Text | 203

These vector arithmetic operations work on the meaning of terms, resulting in some
very interesting results.

We hope you now appreciate the power of word embeddings. We realize that these
results come from just some matrix multiplication and take a minute to train on our
dataset. Word embeddings are almost magical, and it is pleasantly surprising how
such a simple prediction formulation results in such a powerful representation.

When we created the word vectors previously, we didn't pay much attention to the
controls/parameters. There are many, but only some have a significant impact on
the quality of the representations. We will now come to understand the different
parameters of the word2vec algorithm and see the effect of changing these
for ourselves.

Effect of Parameters – "size" of the Vector

The size parameter of the word2vec algorithm is the length of the vector for each
term. By default, as we saw earlier, this is 100. We will try reducing this parameter
and assess the differences, if any, in the results. Let's retrain the word embeddings,
with size as 30 this time:

model = word2vec.Word2Vec(dataset, size=30)

Now, let's check the analogy task from earlier, that is, king - man + woman:

model.wv.most_similar(positive=['woman', 'king'], \

 negative=['man'], topn=5)

This should give us the following output:

[('emperor', 0.8314059972763062),

 ('empress', 0.8250986933708191),

 ('son', 0.8157491683959961),

 ('prince', 0.8060941696166992),

 ('archbishop', 0.8003251552581787)]

We can see that queen isn't present in the top five results. It looks like by using a very
low dimensionality, we aren't capturing enough information in the representation for
a term.

204 | Deep Learning for Text – Embeddings

Effect of Parameters – "window size"

The window size parameter defines the context; concretely, the window size is
the number of terms to the left and to the right of the target term while building the
context. The effect of this parameter is not very obvious. The general observation
is that when you use a higher window size (say, 20), the top similar terms seem to
be terms that are used along with the target term, not necessarily having a similar
meaning. On the other hand, reducing the window size (to, say, 2), returns the top
terms that are very similar in meaning, and are synonyms in many cases.

Skip-gram versus CBOW

Choosing between Skip-gram and CBOW as the learning algorithm is exercised by
setting sg = 1 for Skip-gram (the default is sg = 0, that is, CBOW). Recall that the
Skip-gram approach predicts the context words based on the central target word.
This flips the formulation of CBOW, where the context words are used to predict the
target word. But how do we choose between the two? What are the benefits of one
over the other? To see for ourselves, let's train embeddings using Skip-gram and
compare some results with what we had for CBOW. To begin, let's take a particular
example for CBOW. First, we'll recreate the CBOW word vectors with the default
vector size by not specifying the size parameter. Oeuvre is a term for the body of
work of an artist/performer. We'll see the most similar terms for the uncommon
term, oeuvre:

model = word2vec.Word2Vec(dataset)

model.wv.most_similar("oeuvre", topn=5)

The following terms come out as the most similar terms:

[('baglione', 0.7203884124755859),

 ('chateaubriand', 0.7119786143302917),

 ('kurosawa', 0.6956337690353394),

 ('swinburne', 0.6926312446594238),

 ('poetess', 0.6910216808319092)]

We can see that most results are the names of artists (swinburne, kurosawa, and
baglione) or food dishes (chateaubriand). None of the top five results are close
in meaning to the target term. Now, let's retrain our vectors using the Skip-gram
method and see the result on the same task:

model_sg = word2vec.Word2Vec(dataset, sg=1)

model_sg.wv.most_similar("oeuvre", topn=5)

Distributed Representation for Text | 205

This gives us the following output:

[('masterful', 0.8347533345222473),

 ('orchestration', 0.8149941563606262),

 ('mussorgsky', 0.8116796016693115),

 ('showcasing', 0.8080146312713623),

 ('lithographs', 0.805435299873352)]

We can see that the top terms are much closer in meaning (masterful,
orchestration, showcasing). So, the Skip-gram method seems to work better
for rare words.

Why is this so? The CBOW method smooths over a lot of the distributional statistics
by effectively averaging overall context words (remember, all the context terms
together go as an input), while Skip-gram does not. When you have a small dataset,
the smoothing that's done by CBOW is desirable. If you have a small/moderately sized
dataset, and if you are concerned about the representation of rare terms, then Skip-
gram is a good option.

Effect of Training Data

A very important decision while training your word vectors is the underlying data. The
patterns and similarities will be learned from the data you supply to the algorithm,
and we expect the model to learn differently from data from different domains,
different kinds of settings, and so on. To appreciate this, we load different corpora
from different contexts and see how the embeddings vary.

The Brown corpus is a collection of general text, collected from 15 different topics to
make it general (from politics to religion, books to music, and many other themes).
It contains 500 text samples and about 1 million words. The "movie" corpus contains
movie-review data from IMDb. Both of these are available in NLTK.

Exercise 4.06: Training Word Vectors on Different Datasets

In this exercise, we will train our own word vectors on the Brown corpus and the
IMDb movie reviews corpus. We will assess the differences in the representations
learned and the effect of the underlying training data. Follow these steps to complete
this exercise:

1. Import the Brown and IMDb movie reviews corpus from NLTK:

nltk.download('brown')

nltk.download('movie_reviews')

from nltk.corpus import brown, movie_reviews

206 | Deep Learning for Text – Embeddings

2. The corpora have a convenient method, sent(), to extract the individual
sentences and words (tokenized sentences, which can be directly passed to the
word2vec algorithm). Since both the corpora are rather small, use the Skip-
gram method to create the embeddings:

model_brown = word2vec.Word2Vec(brown.sents(), sg=1)

model_movie = word2vec.Word2Vec(movie_reviews.sents(), sg=1)

We now have two embeddings that have been learned on different contexts for
the same term. Let's see the most similar terms for money from the model on
the Brown corpus.

3. Print out the top five terms most similar to money from the model that were
learned on the Brown corpus:

model_brown.wv.most_similar('money', topn=5)

The following is the output of the preceding code:

[('job', 0.8477444648742676),

 ('care', 0.8424298763275146),

 ('friendship', 0.8394286632537842),

 ('risk', 0.8268661499023438),

 ('permission', 0.8243911862373352)]

We can see that the top term is 'job'; fair enough. Let's see what the model
learned regarding movie reviews.

4. Print out the top five terms most similar to money from the model that learned
from the movie corpus:

model_movie.wv.most_similar('money', topn=5)

The following are the top terms:

[('cash', 0.7299771904945374),

 ('ransom', 0.7130625247955322),

 ('record', 0.7028014063835144),

 ('risk', 0.6977001428604126),

 ('paid', 0.6940697431564331)]

Distributed Representation for Text | 207

The top terms are cash and ransom. Considering the language being used in
movies, and thus in movie reviews, this isn't very surprising.

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we created word vectors using different datasets and saw that the
representations for the same terms and the associations that were learned are very
affected by the underlying data. So, choose your data wisely.

Using Pre-Trained Word Vectors

So far, we've trained our own word embeddings using the small datasets we had
access to. The folks at the Stanford NLP group have trained word embeddings on
6 billion tokens with 400,000 terms in the vocabulary. Individually, we will not have
the resources to handle this scale. Fortunately, the Stanford NLP group has been
benevolent enough to make these trained embeddings available to the general
public so that people like us can benefit from their work. The trained embeddings are
available on the GloVe page (https://nlp.stanford.edu/projects/glove/).

A quick note on GloVe: the method that's used for training is slightly different. The
objective is modified to make the similar terms occur closer in space, in a little more
explicit fashion. You can read about the details on the project page for GloVe (https://
nlp.stanford.edu/projects/glove/), which also has a link to the original paper proposing it.
The end result, however, is very similar in performance to word2vec.

We'll download the glove.6B.zip file from the GloVe project page. The file
contains 50D, 100D, 200D, and 300D vectors. We'll work with the 100D vectors here.
Please unzip the file and make sure you have the text files in your working directory.
The trained vectors are available as a text file, and the format is slightly different.
We'll use the glove2word2vec utility that's available in Gensim to convert into a
format that Gensim can easily load:

from gensim.scripts.glove2word2vec import glove2word2vec

glove_input_file = 'glove.6B.100d.txt'

word2vec_output_file = 'glove.6B.100d.w2vformat.txt'

glove2word2vec(glove_input_file, word2vec_output_file)

https://packt.live/2VVNEgf
https://packt.live/38Gr54r
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

208 | Deep Learning for Text – Embeddings

We specified the input and the output file and ran the glove2word2vec utility. As
the name suggests, the utility takes in word vectors in GloVe format and converts
them into word2vec format. After this, the word2vec models can understand
these embeddings easily. Now, let's load the keyed word vectors from the text
file (reformatted):

from gensim.models.keyedvectors import KeyedVectors

glove_model = KeyedVectors.load_word2vec_format\

 ("glove.6B.100d.w2vformat.txt", binary=False)

With this done, we have the GloVe embeddings in the model, along with all the handy
utilities we had for the embeddings model from word2vec. Let's check out the top
terms similar to "money":

glove_model.most_similar("money", topn=5)

The output is as follows:

[('funds', 0.8508071899414062),

 ('cash', 0.848483681678772),

 ('fund', 0.7594833374023438),

 ('paying', 0.7415367364883423),

 ('pay', 0.740767240524292)]

For closure, let's also check how this model performs on the king and queen tasks:

glove_model.most_similar(positive=['woman', 'king'], \

 negative=['man'], topn=5)

The following is the output of the preceding code:

[('queen', 0.7698541283607483),

 ('monarch', 0.6843380928039551),

 ('throne', 0.6755737066268921),

 ('daughter', 0.6594556570053101),

 ('princess', 0.6520533561706543)]

Now that we have these embeddings in a model, we can work with them the same
way we worked with the embeddings we created previously and can benefit from
the larger dataset and vocabulary and the processing power used by the
contributing organization.

Distributed Representation for Text | 209

Bias in Embeddings – A Word of Caution

When discussing regularities and analogies, we saw the following example:

king – man + woman = queen

It's great that the embeddings are capturing these regularities by learning from the
text data. Let's try something similar to a profession. Let's see the term closest to
doctor – man + woman:

model.wv.most_similar(positive=['woman', 'doctor'], \

 negative=['man'], topn=5)

The output regarding the top five results will be as follows:

[('nurse', 0.6464251279830933),

 ('child', 0.5847542881965637),

 ('teacher', 0.569127082824707),

 ('detective', 0.5451491475105286),

 ('boyfriend', 0.5403486490249634)]

That's not the kind of result we want. Doctors are males, while females are nurses?
Let's try another example. This time, let's try what the model thinks regarding females
as corresponding to "smart" for "males":

model.wv.most_similar(positive=['woman', 'smart'], \

 negative=['man'], topn=5)

We get the following top five results:

[('cute', 0.6156168580055237),

 ('dumb', 0.6035820245742798),

 ('crazy', 0.5834532976150513),

 ('pet', 0.582811713218689),

 ('fancy', 0.5697714686393738)]

We can see that the top terms are 'cute', 'dumb', and 'crazy'. That's not
good at all.

What's happening here? Is this seemingly great representation approach sexist? Is
the word2vec algorithm sexist? There definitely is bias in the resulting word vectors,
but think about where the bias is coming from. It's the underlying data that uses
'nurse' for females in contexts where 'doctor' is used for males. It is, therefore,
the underlying text that contains the bias, not the algorithm.

210 | Deep Learning for Text – Embeddings

This topic has recently gained significant attention, and there is ongoing research
around ways to assess and get rid of biases from the learned embeddings, but a good
approach is to avoid biases in the data to begin with. If you trained word embeddings
on YouTube comments, don't be surprised if they contain all kinds of extreme biases.
You're better off avoiding text data that you suspect to have biases.

Other Notable Approaches to Word Embeddings

We worked with the word2vec approach primarily, and we briefly looked at the
GloVe approach. While these are the most popular approaches, there are a few other
approaches worth mentioning:

FastText: Created by Facebook's AI Research (FAIR) lab, it uses subword
information to enrich the word embeddings. You can read more about it on the
official page (https://research.fb.com/downloads/fasttext/).

WordRank: Treats the embeddings problem as a word-ranking problem. Its
performance is similar to word2vec in several tasks. You can read more about this at
https://arxiv.org/abs/1506.02761.

Other than these, some popular libraries now have pre-trained embeddings available
(SpaCy is a good example). The choices are aplenty. We can't do a detailed treatment
of these choices here, but please do explore the options.

We've discussed a lot of ideas around representation in this chapter. Now, let's
implement these ideas with the help of an activity.

Activity 4.02: Text Representation for Alice in Wonderland

In the previous activity, we tokenized and performed basic preprocessing of the text.
In this activity, we will advance this process by using representation approaches for
the text. You will create your own embeddings from the data and see the kind of
relations we have. You will also utilize pre-trained embeddings to represent the data
in the text.

Note

Note that you'll need to have completed Activity 4.01, Text Preprocessing of
the 'Alice in Wonderland' Text, to proceed with this activity. In that activity,
we performed stop word removal on the text.

https://research.fb.com/downloads/fasttext/
https://arxiv.org/abs/1506.02761

Distributed Representation for Text | 211

You need to perform the following steps:

We'll continue using the same Jupyter Notebook that we used for Activity 4.01, Text
Preprocessing of the 'Alice in Wonderland' Text. We'll work on the result of the stop
word removal step we got in that activity (let's say it is stored in a variable called
alice_words_nostop). Print the first three sentences from the result.

1. Import word2vec from Gensim and train your word embeddings with
default parameters.

2. Find the terms most similar to rabbit.

3. Using a window size 2, retrain the word vectors.

4. Find the terms most similar to rabbit.

5. Retrain the word vectors using the Skip-gram method with a window size of 5.

6. Find the terms most similar to rabbit.

7. Find the representation for the phrase white rabbit by averaging the vectors
for white and rabbit.

8. Find the representation for mad hatter by averaging the vectors for mad
and hatter.

9. Find the cosine similarity between these two phrases.

10. Load pre-trained GloVe embeddings of size 100D.

11. Find representations for white rabbit and mad hatter.

12. Find the cosine similarity between the two phrases. Has the cosine
similarity changed?

As a result of this activity, we will have our own word vectors that have been trained
on "Alice's Adventures in Wonderland" and have representation for the terms
available in the text.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 407.

212 | Deep Learning for Text – Embeddings

Summary
In this chapter, we began by discussing the peculiarities of text data and how
ambiguity makes NLP difficult. We discussed that there are two key ideas in working
with text – preprocessing and representation. We discussed the many tasks involved
in preprocessing, that is, getting your data cleaned up and ready for analysis. We saw
various approaches to removing imperfections from the data.

Representation was the next big aspect – we understood the considerations
in representing text and converting text into numbers. We looked at various
approaches, beginning with classical approaches, which included one-hot encoding,
the count-based approach, and the TF-IDF method.

Word embeddings are a whole new approach to representing text that leverage
ideas from distributional semantics – terms that appear in similar contexts have
similar meanings. The word2vec algorithm smartly exploits this idea by formulating a
prediction problem: predict a target word given the context. It uses a neural network
for the prediction and, in the process, learns vector representations for the terms.

We saw that these representations are amazing as they seem to capture meaning,
and simple arithmetic operations gave some very interesting and meaningful results.
You can even create representations for phrases or even sentences/documents using
word vectors. This sets the stage for later when we use word embeddings in more
sophisticated deep learning architectures for NLP.

In the next chapter, we'll continue our exploration of sequences by applying deep
learning approaches such as recurrent neural networks and one-dimensional
convolutions to them.

Overview

In this chapter, we will implement deep learning-based approaches to
sequence modeling, after understanding the considerations of dealing with
sequences. We will begin with Recurrent Neural Networks (RNNs), an
intuitive approach to sequence processing that has provided state-of-the-
art results. We will then discuss and implement 1D convolutions as another
approach and see how it compares with RNNs. We will also combine
RNNs with 1D convolutions in a hybrid model. We will employ all of these
models on a classic sequence processing task – stock price prediction.
By the end of this chapter, you will become adept at implementing deep
learning approaches for sequences, particularly plain RNNs and 1D
convolutions, and you will have laid the foundations for more advanced
RNN-based models.

Deep Learning for Sequences

5

216 | Deep Learning for Sequences

Introduction
Let's say you're working with text data and your objective is to build a model that
checks whether a sentence is grammatically correct. Consider the following sentence:
"words? while sequence be this solved of can the ignoring". The question didn't make
sense, right? Well, how about the following? "Can this be solved while ignoring the
sequence of words?"

Suddenly, the text makes complete sense. What do we acknowledge, then, about
working with text data? That sequence matters.

In the task of assessing whether a given sentence is grammatically correct, the
sequence is important. Sequence-agnostic models would fail terribly at the task.
The nature of the task requires you to analyze the sequence of the terms.

In the previous chapter, we worked with text data, discussing ideas around
representation and creating our own word vectors. Text and natural language data
have another important characteristic – they have a sequence to them. While text
data is one example of sequence data, sequences are everywhere: from speech to
stock prices, from music to global temperatures. In this chapter, we'll start working
with sequential data in a way that considers the order of the elements. We will
begin with RNNs, a deep learning approach that exploits the sequence of data to
provide insightful results of tasks such as machine translation, sentiment analysis,
recommender systems, and time series prediction, to name a few. We will then look
at using convolutions for sequence data. Finally, we will see how these approaches
can be combined in a single, powerful deep learning architecture. Along the way, we
will also build an RNN-based model for stock price prediction.

Working with Sequences | 217

Working with Sequences
Let's look at another example to make the importance of sequence modeling clearer.
The task is to predict the stock price for a company for the next 30 days. The data
provided to you is the stock price for today. You can see this in the following plot,
where the y-axis represents the stock price and the x-axis denotes the date. Is this
data sufficient?

Figure 5.1: Stock price with just 1 day's data

218 | Deep Learning for Sequences

Surely, one data point, that is, the price on a given day, is not sufficient to predict
the price for the next 30 days. We need more information. Particularly, we need
information about the past – how the stock price has been moving for the past few
days/months/years. So, we ask for, and get, data for three years:

Figure 5.2: Stock price prediction using historical data

This seems much more useful, right? Looking at the past trend and some patterns in
the data, we can make predictions on the future stock prices. Thus, by looking at the
past trend, we get a rough idea of how the stock will move over the next few days. We
can't do this without a sequence. Again, sequence matters.

In real-world use cases, say, machine translation, you need to consider the sequence
in the data. Sequence-agnostic models can only get you so far in some tasks; you
need an approach that truly exploits the information contained in the sequence.
But before talking about the workings of those architectures, we need to answer an
important question: what are sequences, anyway?

While the definition of a "sequence" from the dictionary is rather self-explanatory, we
need to be able to identify sequences for ourselves and decide whether we need to
consider the sequence. To understand this idea, let's go back to the first example we
saw: "words? while sequence be this solved of can the ignoring" versus "can this be solved
while ignoring the sequence of words?"

Working with Sequences | 219

When you jumbled the terms of the meaningful sentence text, it stopped making
sense and lost all/most of the information. This can be a simple and effective test for
a sequence: If you jumbled the elements, does it still make sense? If the answer is
"no," then you have a sequence at hand. While sequences are everywhere, here are
some examples of sequence data: language, music, movie scripts, music videos, time-
series data (stock prices, commodity prices, and more), and the survival probability of
a patient.

Time Series Data – Stock Price Prediction

We will start working on our own model for predicting stock prices. The objective of
the stock price prediction task is to build a model that can predict the next day's stock
price based on historical prices. As we saw in the previous section, the task requires
us to consider the sequence in the data. We will predict the stock price for Apple Inc.

Note

We will use a cleaned-up version of Apple's historical stock data that's been
sourced from the Nasdaq website: https://www.nasdaq.com/market-activity/
stocks/aapl/historical. The dataset can be downloaded from the following
link: https://packt.live/325WSKR.

Make sure to place the file (AAPL.csv) in your working directory and start
a new Jupyter Notebook for the code. It is important that you run all the
code in the exercises and the topic sections in a single Jupyter Notebook.

Let's begin by understanding the data. We will load the required libraries and then
load and plot the data. You can use the following commands to load the necessary
libraries and use the cell magic command (%matplotlib inline) to plot the
images inline:

import pandas as pd, numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

Next, we'll load the .csv file, using the read_csv() method from Pandas, into a
DataFrame (inp0) and have a look at a few records using the head method of the
pandas DataFrame:

inp0 = pd.read_csv('AAPL.csv')

inp0.head()

https://www.nasdaq.com/market-activity/stocks/aapl/historical
https://www.nasdaq.com/market-activity/stocks/aapl/historical
https://packt.live/325WSKR

220 | Deep Learning for Sequences

You should get the following output:

Figure 5.3: The first five records of the AAPL dataset

We can see that the first record is for January 17, 2020 and is the most recent date
in the data (the latest data at the time of writing this book). As is the convention
for pandas DataFrames, the first record has an index of 0 (the index is simply the
identifier for the row, and each row has an index value). Open refers to the value of
a particular stock at the opening of the trade, High refers to the highest value of the
stock during the day, while Low and Close represent the lowest price and closing
price, respectively. We also have the volume traded on the day.

Let's also look at the last few records of the dataset using the following command:

inp0.tail()

The records look as follows:

Figure 5.4: Bottom five records of the AAPL dataset

From the preceding tables, we can see that we have daily opening, high, low, and
closing prices, and volumes, from January 25, 2010 to January 17, 2020. For our
purpose, we are concerned with the closing price.

Working with Sequences | 221

Exercise 5.01: Visualizing Our Time-Series Data

In this exercise, we will extract the closing price from the data, perform the necessary
formatting, and plot the time series to gain a better understanding of the data. Make
sure that you have read through the preceding section and loaded the data, as well as
imported the relevant libraries. Perform the following steps to complete this exercise:

1. Use the following command to import the necessary libraries if you
haven't already:

import pandas as pd, numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

2. Download the file titled AAPL.csv from GitHub (https://packt.live/325WSKR) and
load it into a DataFrame:

inp0 = pd.read_csv('AAPL.csv')

3. Plot the Close column as a line plot to see the pattern using the plot method
of the DataFrame, specifying the Date column as the X-axis:

inp0.plot("Date", "Close")

plt.show()

The plot for this will be as follows, with the X-axis showing the closing price and
the Y-axis representing the dates:

Figure 5.5: Plot of the closing price

https://packt.live/325WSKR

222 | Deep Learning for Sequences

From the plot, we can see that the latest values are getting plotted first (on
the left). We'll reverse the data for convenience of plotting and handling. We'll
achieve this by sorting the DataFrame by the index (remember that the index
was 0 for the latest record) in descending order.

4. Reverse the data by sorting the DataFrame on the index. Plot the closing price
again and supply Date as the X-axis:

inp0 = inp0.sort_index(ascending=False)

inp0.plot("Date", "Close")

plt.show()

The closing price will be plotted as follows:

Figure 5.6: The trend after reversing the data

That worked as expected. We can see that the latest values are plotted to
the right.

5. Extract the values for Close from the DataFrame as a numpy array, reshaped to
specify one column using array.reshape(-1,1):

ts_data = inp0.Close.values.reshape(-1,1)

Working with Sequences | 223

6. Plot the values as a line plot using matplotlib. Don't worry about marking
the dates; the order of the data is clear (matplotlib will use an index instead,
beginning with 0 for the first point):

plt.figure(figsize=[14,5])

plt.plot(ts_data)

plt.show()

The resulting trend is as follows, with the X-axis representing the index and the
Y-axis showing the closing price:

Figure 5.7: The daily stock price trend

That's what our sequence data looks like. There is no continuous clear trend; the
prices rose for a period, after which the stock waxed and waned. The pattern isn't
straightforward. We can see that there is some seasonality at a small duration (maybe
monthly). Overall, the pattern is rather complex and there are no obvious and easy-
to-identify cyclicities in the data that we can exploit. This complex sequence is what
we will work with – predicting the stock price for a day using historical values.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2ZctArW
https://packt.live/38EDOEA

224 | Deep Learning for Sequences

In this exercise, we loaded the stock price data. After reversing the data for ease of
handling, we extracted the closing price (the Close column). We plotted the data to
visually examine the trend and patterns in the data, acknowledging that there aren't
any obvious patterns in the data for us to exploit.

Note

Whether you treat the data as a sequence also depends on the task at
hand. If the task doesn't need the information in the sequence, then maybe
you don't need to treat it as such.

In this chapter, we'll be focusing on tasks that require/greatly benefit from exploiting
the sequence in the data. How is that done? We'll find out in the following sections,
where we'll discuss the intuition and the approach behind RNNs.

Recurrent Neural Networks
How does our brain process a sentence? Let's try to understand how our brain
processes a sentence as we read it. You see some terms in a sentence, and you need
to identify the sentiment contained in the sentence (positive, negative, neutral). Let's
look at the first term – "I":

Figure 5.8 Sentiment analysis for the first term

"I" is neutral, so our classification (neutral) is appropriate. Let's look at another term:

Figure 5.9: Sentiment analysis with two terms

Recurrent Neural Networks | 225

With the term "can't," we need to update our assessment of the sentiment. "I" and
"can't" together typically have a negative connotation, so our current assessment
is updated as "negative" and is marked with a cross. Let's look at the next couple
of words:

Figure 5.10: Sentiment analysis with four terms

After the two additional terms, we maintain our prediction that the sentence has a
negative sentiment. With all the information so far, "I can't find any," is a good
assessment. Let's look at the final term:

Figure 5.11: Sentiment analysis with the final term added

With that last term coming in, our prediction is completely overturned. Suddenly, we
now agree that this is a positive expression. Your assessment is updated with each
new term coming in, is it not? Your brain gathers/collects all the information it has at
hand and makes an assessment. On arrival of the new term, the assessment so far is
updated. This process is exactly what an RNN mimics.

So, what makes a network "recurrent"? The key idea is to not only process new
information but also retain the information received so far. This is achieved in RNNs by
making the output depend not only on the new input value but also on the current
"state" (information captured so far). To understand this better, let's see how a
standard feedforward neural network would process a simple sentence and compare
it with how an RNN would process it.

226 | Deep Learning for Sequences

Consider the task of sentiment classification (positive or negative) for an input
sentence, "life is good." In a standard feedforward network, the inputs corresponding
to all the terms in the sentence are passed to the network together. As depicted in
the following diagram, the input data is the combined representation of all the terms
in the sentence that have been passed to the hidden layers of the network. All the
terms are considered together to classify the sentiment in the sentence as positive:

Figure 5.12: Standard feedforward network for sentiment classification

In contrast, an RNN would process the sentence word by word. As shown in the
following diagram, the first input for the term "life" is passed to the hidden layers
at time t=0. The hidden layers provide some output values, but this isn't the final
classification of the sentence and is rather an intermediate value of the hidden layers.
No classification is done yet:

Figure 5.13: RNN processing the first term at time t=0

Recurrent Neural Networks | 227

The next term "is"), along with its corresponding input, is processed at time t=1
and then fed to the hidden layers. As shown in the following diagram, this time, the
hidden layer also considers the intermediate output from the hidden layer at time
t=0, which is essentially the output corresponding to the term "life." The output
from the hidden layers will now effectively consider the new input ("is") and the
input at the previous time step ("life"):

Figure 5.14: The network at t=1

After time step t=1, the output of the hidden layers effectively contains information
from the terms "life" and "is,", effectively holding information corresponding to
the inputs so far. At time t=2, the data corresponding to the next term, that is, "good,"
is fed into the hidden layers. The following diagram shows that the hidden layers
use this new input data, along with the output from hidden layers from time t=1, to
provide an output. This output effectively considers all the inputs so far, in the order
in which they appear in the input text. It is when the entire sentence is processed that
the final classification of the sentence is made ("positive", in this case):

Figure 5.15: Output at t=2 when the entire sentence is processed

228 | Deep Learning for Sequences

Loops – An Integral Part of RNNs

A common part of RNNs is using "loops," as shown in the following diagram. By loops,
we mean a mechanism of retaining the "state" value containing the information so far
and using it along with the new input:

Figure 5.16: RNNs depicted with a loop

As shown in the following diagram, this is done by simply making a virtual copy of
the hidden layer and using it at the next time step, that is, when processing the
next input. If processing a sentence term by term, this would mean, for each term,
saving the hidden layer output (time t-1), and when the new term comes in at time
t, processing the hidden layer output (time t) along with its previous state (time t-1).
That's all there really is to it:

Figure 5.17: Copying the hidden layer state

Recurrent Neural Networks | 229

To make the workings of RNNs even more clear, let's expand the view from Figure
5.15, where we saw how the input sentence is processed term by term. We'll
understand how different an RNN is from a standard feedforward network.

The part highlighted by the dotted box should be familiar to you – it represents the
standard feedforward network with hidden layers (rectangles with dotted lines).
The data for an input flows from left to right across the depth of the network, using
feedforward weights, WF, to provide an output -- exactly as in a standard feedforward
network. The recurrent part is the flow of data from bottom to top, across the
time steps:

Figure. 5.18: RNN architecture

230 | Deep Learning for Sequences

For all the hidden layers, the output propagates along the time dimension too, to the
next time step. Alternately, for a hidden layer at time step t and depth l, the inputs are
as follows:

• Data from the previous hidden layer at the same time step

• Data from the same hidden layer at the previous time step

Have a good look at the preceding diagram to understand the workings of an RNN.
The output from the hidden layer can be derived as follows:

Figure 5.19: Calculating activations in an RNN

The first part of the formula, WF
(l)at

(l-1), corresponds to the result of the feedforward
calculation, that is, applying feedforward weights (WF) to the output (at

(l-1)) from the
previous layer. The second part corresponds to the recurrent calculation, that is,
applying recurrent weights (WR

(l)) to the output from the same layer from the previous
time step (at-1

(l)). Additionally, as with all neural network layers, there is a bias term as
well. This result, on applying the activation function, becomes the output from the
layer at time t and depth l (at

(l)).

To make the idea more concrete, let's implement the feedforward steps of a simple
RNN using TensorFlow.

Exercise 5.02: Implementing the Forward Pass of a Simple RNN Using TensorFlow

In this exercise, we will use TensorFlow to perform one pass of the operations in
a simple RNN with one hidden layer and two time steps. By performing one pass,
we mean calculating the activation of the hidden layer at time step t=0, then using
this output along with the new input at t=1 (applying the appropriate recurrent
and feedforward weights) to obtain the output at time t=1. Initiate a new Jupyter
Notebook for this exercise and perform the following steps:

1. Import TensorFlow and NumPy. Set a random seed of 0 using numpy to make
the results reproducible:

import numpy as np

import tensorflow as tf

np.random.seed(0)

tf.random.set_seed(0)

Recurrent Neural Networks | 231

2. Define the num_inputs and num_neurons constants that will be holding
the number of inputs (2) and the number of neurons in the hidden layer
(3), respectively:

num_inputs = 2

num_neurons = 3

We will have two inputs at each time step. Let's call them xt0 and xt1.

3. Define the variables for the weight matrices. We need two of them – one for
the feedforward weights and another for the recurrent weights. Initialize
them randomly:

Wf = tf.Variable(tf.random.normal\

 (shape=[num_inputs, num_neurons]))

Wr = tf.Variable(tf.random.normal\

 (shape=[num_neurons, num_neurons]))

Notice the dimensions for the recurrent weights – it is a square matrix, with as
many rows/columns as the number of neurons in the hidden layer.

4. Add the bias variable (to make the activations fit the data better), with as many
zeros as the number of neurons in the hidden layer:

b = tf.Variable(tf.zeros([1,num_neurons]))

5. Create the data – three examples for xt0 (two inputs, three examples) as
[[0,1], [2,3], [4,5]] and xt1 as [[100,101], [102,103],
[104,105]] – as numpy arrays of the float32 type (consistent with dtype
for TensorFlow's default float representation):

xt0_batch = np.array([[0,1],[2,3],[4,5]]).astype(np.float32)

xt1_batch = np.array([[100, 101],[102, 103],\

 [104,105]]).astype(np.float32)

6. Define a function named forward_pass to apply a forward pass to the given
data, that is, xt0, xt1. Use tanh as the activation function. The output at t=0
should be derived from Wf and xt0 alone. The output at t=1 must use yt0 with
the recurrent weights, Wf, and use the new input, xt1. The function should
return outputs at the two time steps:

def forward_pass(xt0, xt1):

 yt0 = tf.tanh(tf.matmul(xt0, Wf) + b)

 yt1 = tf.tanh(tf.matmul(yt0, Wr) + tf.matmul(xt1, Wf) + b)

 return yt0, yt1

232 | Deep Learning for Sequences

Note that there is no recurrent weight here at time step 0; it comes into play only
after the first time step.

7. Perform the forward pass by calling the forward_pass function with the
created data (xt0_batch, xt1_batch) and put the output into variables,
yt0_output and yt1_output:

yt0_output, yt1_output = forward_pass(xt0_batch, xt1_batch)

8. Print the output values, yt0_output and yt1_output, using the print
function from TensorFlow:

tf.print(yt0_output)

The output at t=0 gets printed out like so. Note that this result could be slightly
different for you because of the random initialization that's done by TensorFlow:

[[-0.776318431 -0.844548464 0.438419849]

 [-0.0857750699 -0.993522227 0.516408086]

 [0.698345721 -0.999749422 0.586677969]]

9. Now, print the values of yt1_output:

tf.print(yt1_output)

The output at t=1 gets is printed as follows. Again, this could be slightly different
for you because of the random initial values, but all the values should be close to
1 or -1:

 [[1 -1 0.999998629]

 [1 -1 0.999998331]

 [1 -1 0.999997377]]

We can see that the final output at time t=1 is a 3x3 matrix – representing the
outputs for the three neurons in the hidden layer for the three instances of data.

Recurrent Neural Networks | 233

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

Note

Despite having set the seeds for numpy as well as tensorflow to
achieve reproducible results, there are a lot more causes for the variation
in results. While the values you see may be different, the output you see
should largely agree with ours.

In this exercise, we manually performed the forward pass for two time steps in a
simple RNN. We saw that it's merely using the hidden layer output from the previous
time step as an input to the next. Now, you don't really need to perform any of this
manually – Keras makes making RNNs very simple. We will use Keras for our stock
price prediction model.

The Flexibility and Versatility of RNNs

In Exercise 5.2, Implementing the Forward Pass of a Simple RNN Using TensorFlow, we
used two inputs at each time step, and we had an output at each time step. But it
doesn't always have to be that way. RNNs have a lot of flexibility to offer. For starters,
you can have single/multiple inputs as well as outputs. Additionally, you needn't have
inputs and outputs at each time step.

You could have the following:

• Inputs at different time steps with the output only at the final step

• A single input with outputs at multiple time steps

• Both inputs and outputs (equal or unequal lengths) at multiple time steps

https://packt.live/2ZctArW
https://packt.live/38EDOEA

234 | Deep Learning for Sequences

There is enormous flexibility in RNN architectures, and this flexibility makes them very
versatile. Let's take a look at some possible architectures and what some potential
applications can be:

Figure 5.20: Inputs at multiple steps with the output at the final step

You can have inputs at multiple time steps, such as in a sequence (or single or more
inputs) with the output only at the final time step, when the prediction is made, as
shown in the preceding diagram. At each time step, the hidden layers operate on
the feedforward output from the previous layer and the recurrent output from its
copy from the previous time step. But there is no prediction for the intermediate
time steps. Prediction is made only after processing the entire input sequence – the
same process we saw in Figure. 5.15 (the "life is good" example). Text classification
applications extensively use this architecture – sentiment classification into positive/
negative, classifying an email into spam/ham, identifying hate speech in comments,
automatically moderating product reviews on a shopping platform, and many more.

Recurrent Neural Networks | 235

Time series prediction (for example, stock prices) also utilizes this architecture, where
the past few values are processed to predict a single future value:

Figure 5.21: Input in a single step, output in multiple steps

The preceding diagram illustrates another architecture in which the input is received
in a single step, but the output is obtained at multiple time steps. Applications around
generation – generating images for a given keyword, generating music for a given
keyword (composer), or generating a paragraph of text for a given keyword – are
based on this architecture.

You could also have an output at each time step corresponding to the input, as
depicted in the following diagram. Essentially, this model will help you make a
prediction for each incoming element of the sequence. An example of such a task
would be the Parts-of-Speech tagging of terms – for each term in a sentence, we
identify whether the term is a noun, verb, adjective, or another part of speech.

236 | Deep Learning for Sequences

Another example from natural language processing would be Named Entity
Recognition (NER) where, for each term in the text, the objective is to detect whether
it represents a named entity and then classify it as an organization, person, place, or
another category if it does:

Figure 5.22: Multiple outputs at each time step

In the previous architecture, we had an output for each incoming element. In many
situations, this doesn't work, and we need an architecture that has different lengths
for input and output, as shown in the following diagram. Think of translation between
languages. Does a sentence in English necessarily have the same number of terms
in its German translation? More often than not, the answer is no. For such cases,
the architecture in the following diagram provides the notion of an "encoder" and a
"decoder." The information corresponding to the input sequence is stored in the final
hidden layer of the encoder network, which in itself has recurrent layers.

Recurrent Neural Networks | 237

This representation/information is processed by the decoder network (again, this is
recurrent), which outputs the translated sequence:

Figure 5.23: Architecture with different lengths for input and output

For all of these architectures, you could also have multiple inputs, making RNN
models even more versatile. For example, when making stock price predictions, you
could provide multiple inputs (previous stock prices of company, the stock exchange
index, crude oil price, and whatever you think is relevant) over multiple time steps,
and the RNN will be able to accommodate and utilize all of these. This is one of the
reasons RNNs are very popular and have changed the way we work with sequences
today. Of course, you also have all the predictive power of deep learning to add.

Preparing the Data for Stock Price Prediction

For our stock price prediction task, we will predict the value of a given stock on any
day by using the past few days' data and feeding it to an RNN. Here, we have a single
input (single feature), over multiple time steps, and a single output. We will employ
the RNN architecture from Figure 5.20.

238 | Deep Learning for Sequences

Note

Continue in the same Jupyter Notebook that we plotted our time-series data
in throughout this chapter (unless specified otherwise).

So far, we've looked at the data and understood what we're dealing with. Next, we
need to prepare the data for the model. The first step is to create a train-test split of
the data. Since this is time-series data, we can't just randomly pick points to assign
to our train and test sets. We need to maintain the sequence. For time-series data,
we typically reserve the first portion of the data to train on and utilize the last part of
the data for our test set. In our case, we will take the first 75% records as our training
data and the last 25% as our test data. The following command will help us get the
size of the train set needed:

train_recs = int(len(ts_data) * 0.75)

This is the number of records we'll have in the train set. We can separate the sets
as follows:

train_data = ts_data[:train_recs]

test_data = ts_data[train_recs:]

len(train_data), len(test_data)

The lengths of the train and test sets will be as follows:

(1885, 629)

Next, we need to scale the stock data. For that, we can employ the min-max scaler
from sklearn. The MinMaxScaler scales the data so that it's in a range between
0 and 1 (inclusive) – the highest value in the data being mapped to 1. We'll fit and
transform the scaler on the train data and only transform the test data:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

train_scaled = scaler.fit_transform(train_data)

test_scaled = scaler.transform(test_data)

Recurrent Neural Networks | 239

The next important step is to format the data to get the "features" for each instance.
We need to define a "lookback period" – the number of days from the history that we
want to use to predict the next value. The following code will help us define a function
that returns the target value of y (stock price for a day) and X (values for each day in
the lookback period):

def get_lookback(inp, look_back):

 y = pd.DataFrame(inp)

 dataX = [y.shift(i) for i in range(1, look_back+1)]

 dataX = pd.concat(dataX, axis=1)

 dataX.fillna(0, inplace = True)

 return dataX.values, y.values

The function takes in a dataset (a series of numbers, rather) and, for the provided
lookback, adds as many values from the history. It does so by shifting the series, each
time concatenating it to the result. The function returns the stock price for the day
as y and the values in lookback period (shifted values) as our features. Now, we can
define a lookback period and see the result of applying the function to our data:

look_back = 10

trainX, trainY = get_lookback(train_scaled, look_back=look_back)

testX, testY = get_lookback(test_scaled, look_back= look_back)

Try the following command to examine the shape of the outcome datasets:

trainX.shape, testX.shape

The output is as follows:

((1885, 10), (629, 10))

As expected, there are 10 features for each example, corresponding to the past 10
days. We have this history for the train data as well as the test data. With that, data
preparation is complete. Before we move on to building our first RNN on this data,
let's understand RNNs a little more.

Note

The trainX and trainY variables we created here will be used
throughout the exercises that follow. So, make sure you are running this
chapter's code in the same Jupyter Notebook.

240 | Deep Learning for Sequences

Parameters in an RNN

To calculate the number of parameters in an RNN layer, let's take a look at a generic
hidden layer:

Figure 5.24: Parameters of the recurrent layer

The hidden layer takes inputs from the previous hidden layer at the same time step,
and also from itself from a previous time step. If the input layer (the previous hidden
layer) to the RNN layer is m-dimensional, we would need n×m weights/parameters,
where n is the number of neurons in the RNN layer. For the output layer, the
dimensionality if the weights would be n×k, if k is the dimensionality of the output.
The recurrent weight is always a square matrix of dimensionality n×n – since the
dimensionality of the input is the same as the layer itself.

The number of parameters for any RNN layer would therefore be n2 + nk + nm,
where we have the following:

• n: Dimension of the hidden (current) layer

• m: Dimension of the input layer

• k: Dimension of the output layer

Recurrent Neural Networks | 241

Training RNNs

How to forward propagate information in an RNN should be clear by now. If not,
please refer to Figure 5.19 with the equations. The new information propagates along
the depth of the network as well along the time steps, using the previous hidden
states at each step. The additional two key aspects of training RNNs are as follows:

• Defining loss: We know how loss is defined for a standard neural network; that
is, it has a single output. With RNNs, in the case that there is a single time step
at the output (for example, text classification), the loss is calculated the same
way as in standard neural networks. But we know that RNNs could have outputs
over multiple time steps (for example, in Part-of-Speech tagging or machine
translation). How is loss defined across multiple time steps? A very simple and
popular approach is summing up the loss at all the steps. The loss for the entire
sequence is calculated as the sum of the loss at all time steps.

• Backpropagation: Backpropagation of the errors now needs us to work
across time steps, since there is a time dimension as well. We have already
seen that loss is defined as the sum of loss at each time step. The usual chain
rule application helps us out; we also need to sum the gradients at each time
step over time. This has a very catchy name: Backpropagation Through
Time (BPTT).

Note

A detailed treatment of the training process and the involved math is beyond
the scope of this book. The basic concept is all we need to understand the
considerations involved.

Now, let's continue building our first RNN model using Keras. We will introduce two
new layers that are available in Keras in this chapter and understand their function
and utility. The first layer we need is the SimpleRNN layer.

To import all the necessary utilities from Keras, you can use the following code:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers \

import SimpleRNN, Activation, Dropout, Dense, Reshape

242 | Deep Learning for Sequences

The SimpleRNN layer is the simplest plain vanilla RNN layer. It takes in a sequence,
and the output of the neuron is fed back as input. Additionally, if we want to follow
this RNN layer with another RNN layer, we have the option of returning sequences as
output. Let's have a look at some of the options.

• ?SimpleRNN: The signature for the SimpleRNN layer is as follows:

Figure 5.25: Signature of the SimpleRNN layer

We can see that the layer also has all the usual options of regular/standard layers in
Keras that let you specify the activations, initialization, dropout, and more.

The RNN layers expect the input data to be in a certain format. Since we can have
input data as multiple time steps for multiple features, the input format is expected
to make that specification unambiguous. The expected input shape is (look_back,
number of features). It expects a matrix with the same lookback history for
each feature.

In our case, we have one feature, and the lookback period is 10. So, the expected
input shape is (10, 1). Note that we currently have each input as a list of 10 values, so
we need to make sure it is understood as (10,1). We'll use the reshape layer for this
purpose. The reshape layer needs the input shape and the target shape. Let's start
building our model by instantiating and adding a reshape layer.

Recurrent Neural Networks | 243

Note

Even though we have set the seeds for numpy as well as tensorflow
to achieve reproducible results, there are a lot more causes for variation
owing to which you may get a result that's different from ours. This applies
to all the models we'll use here. While the values you see may be different,
the output you see should largely agree with ours. If the model performance
is very different, you may want to tweak the number of epochs – the reason
for this being that the weights in neural networks are initialized randomly,
so the starting point for you and us could be slightly different, and we may
reach a similar position when training a different number of epochs.

Exercise 5.03: Building Our First Plain RNN Model

In this exercise, we will build our first plain RNN model. We will have a reshape
layer, followed by a SimpleRNN layer, followed by a dense layer for the prediction.
We will use the formatted data for trainX and trainY that we created earlier,
along with the initialized layers from Keras. Perform the following steps to complete
this exercise:

1. Let's gather the necessary utilities from Keras. Use the following code to do so:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers \

import SimpleRNN, Activation, Dropout, Dense, Reshape

2. Instantiate the Sequential model:

model = Sequential()

3. Add a Reshape layer to get the data in the format (look_back, 1):

model.add(Reshape((look_back,1), input_shape = (look_back,)))

Note the arguments to the Reshape layer. The target shape is (lookback, 1),
as we discussed.

244 | Deep Learning for Sequences

4. Add a SimpleRNN layer with 32 neurons and specify the input shape. Note that
we took an arbitrary number of neurons, so you're welcome to experiment with
this number:

model.add(SimpleRNN(32, input_shape=(look_back, 1)))

5. Add a Dense layer of size 1:

model.add(Dense(1))

6. Add an Activation layer with a linear activation:

model.add(Activation('linear'))

7. Compile the model with the adam optimizer and mean_squared_error (since
we're predicting a real-values quantity):

model.compile(loss='mean_squared_error', optimizer='adam')

8. Print a summary of the model:

model.summary()

The summary will be printed as follows:

Figure 5.26: Summary of the SimpleRNN model

Recurrent Neural Networks | 245

Pay attention to the number of parameters in the SimpleRNN layer. It works out to
be as we expected.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we defined our model architecture using a single-layer plain RNN
architecture. This is indeed a very simple model, in comparison to the kinds of models
we built earlier for image data. Next, let's see how this model performs on the task
at hand.

Model Training and Performance Evaluation

We have defined and compiled the model. The next step is to learn the model
parameters by fitting the model on the train data. We can do this by using a batch
size of 1 and a validation split of 10%, and by training for only three epochs. We tried
different values of epochs and found that the model gave the best result at three
epochs. The following code will help us train the model using the fit() method:

model.fit(trainX, trainY, epochs=3, batch_size=1, \

 verbose=2, validation_split=0.1)

The output is as follows:

Figure 5.27: Training output

https://packt.live/2ZctArW
https://packt.live/38EDOEA

246 | Deep Learning for Sequences

We can see that the loss is already pretty low. We trained the model here without
doing any careful hyperparameter tuning. You can see that for this dataset, three
epochs was sufficient, and we're trying to keep it simple here. With the model training
done, we now need to assess the performance on the train and test sets.

To make our code a little more modular, we'll define two functions – one to print the
RMS error on the train and test sets and the other function to plot the predictions for
the test data along with the original values in the data. Let's begin by defining our first
function, using the sqrt function from math to get the root of the mean_squared_
error provided to us by the model's evaluate method. The function definition is
as follows:

import math

def get_model_perf(model_obj):

 score_train = model_obj.evaluate(trainX, trainY, verbose=0)

 print('Train RMSE: %.2f RMSE' % (math.sqrt(score_train)))

 score_test = model_obj.evaluate(testX, testY, verbose=0)

 print('Test RMSE: %.2f RMSE' % (math.sqrt(score_test)))

To see how our model did, we need to supply our model object to this method. This
can be done as follows:

get_model_perf(model)

The output will be as follows:

Train RMSE: 0.02 RMSE

Test RMSE: 0.03 RMSE

The values seem rather low (admittedly, we don't really have a benchmark here,
but these values do seem to be good considering that our outcome values are
ranging from 0 to 1). But this is a summary statistic, and we already know that the
values in the data change considerably. A better idea would be to visually assess the
performance, comparing the actual values to the predicted for the test period. The
following code will help us define a function that plots the predictions for a given
model object:

def plot_pred(model_obj):

 testPredict = \

 scaler.inverse_transform(model_obj.predict(testX))

 pred_test_plot = ts_data.copy()

 pred_test_plot[:train_recs+look_back,:] = np.nan

Recurrent Neural Networks | 247

 pred_test_plot[train_recs+look_back:,:] = \

 testPredict[look_back:]

 plt.plot(ts_data)

 plt.plot(pred_test_plot, "--")

First, the function makes predictions on the test data. Since this data is scaled, we
apply the inverse transform to get the data back to its original scale before plotting it.
The function plots the actual values as a solid line and the predicted values as dotted
lines. Let's use this function to visually assess how our model performs. We need to
simply pass the model object to the plot_pred function, as demonstrated in the
following code:

%matplotlib inline

plt.figure(figsize=[10,5])

plot_pred(model)

The plot that's displayed is as follows:

Figure 5.28: Predictions versus actuals

The preceding diagram visualizes the predictions (dotted lines) from the model
juxtaposed with the actual values (solid lines). That looks pretty good, doesn't it? At
this scale, it looks like overlap between the predicted and the actual is very high – the
prediction curve fits the actual values almost perfectly. Prima facie, it does seem that
the model has done a great job.

248 | Deep Learning for Sequences

But before congratulating ourselves, let's recall the granularity at which we worked
– we're working with 10 points to predict the next day's stock price. Of course, at
this scale, even if we took simple averages, the plot would look impressive. We need
to zoom in, a lot, to understand this better. Let's zoom in so that the individual
points are visible. We'll use the %matplotlib notebook cell magic command for
interactivity in the chart and zoom in on the values corresponding to indices 2400 –
2500 in the plot:

%matplotlib notebook

plot_pred(model)

Note

If the graph presented below is not displayed properly for some reason,
run the cell containing %matplotlib notebook for a couple of times.
Alternatively, you can also use %matplotlib inline instead of
%matplotlib notebook.

The output is as follows, with the dotted lines showing the predictions and the solid
line depicting the actual values:

Figure 5.29: Zoomed-in view of predictions

Even after zooming in, the result is pretty good. All the variations have been captured
well. A single RNN layer with just 32 neurons giving us this kind of result is great.
Those who have worked with time series prediction using classical methods would be
elated (as we were) to see the efficacy of RNNs for this task.

Recurrent Neural Networks | 249

We saw what RNNs are and, through our stock price prediction model, also saw the
predictive power of even a very simple model for a sequence prediction task. We
mentioned earlier that using an RNN is one approach to sequence processing. There
is another noteworthy approach to handling sequences that employs convolutions.
We'll explore it in the next section.

1D Convolutions for Sequence Processing

In the previous chapters, you saw how deep neural networks benefit from
convolutions – you saw convnets and how they can be used for working with images,
and how they help with the following:

• Reducing the number of parameters

• Learning the "local features" for the image

Interestingly, and this is something that is not very obvious, convnets can also be very
helpful for sequence processing tasks. Instead of 2D, we could use 1D convolutions
for sequence data. How does 1D convolution work? Let's take a look:

Figure 5.30: Feature generation using 1D convolutions

250 | Deep Learning for Sequences

In Chapter 3, Image Classification with Convolutional Networks, we saw how a filter
works for the case of images, extracting "patches" from the input image to provide
us with output "features." In the case of 1D, a filter extracts subsequences from the
input sequence and multiplies them by the weights to give us a value for the output
features. As shown in the preceding diagram, the filter moves from the beginning
to the end of the sequence (top to bottom). This way, the 1D convnet extracts local
patches. As in the 2D case, the patches/features learned here can be recognized later
in a different position in the sequence. Of course, as with 2D convolutions, you can
choose the filter size and the stride for 1D convolutions as well. If used with a stride
more than 1, the 1D convnet can also significantly reduce the number of features.

Note

When employed on text data as the first layer, the "local features" that 1D
convolutions extract are features for groups of words. A filter size of 2 would
help extract two-word combos (called bi-grams), 3 would extract three-word
combos (tri-grams), and so on. Larger filter sizes would learn larger groups
of terms.

You could also apply pooling to 1D – max or average pooling to further subsample
the features. So, you could greatly reduce the effective length of sequence that you're
dealing with. A long input sequence can be brought down to a much smaller, more
manageable length. This should certainly help with speed.

We understand that we benefit in speed. But do 1D convnets perform well for
sequences? 1D convnets have shown very good results in tasks around translation
and text classification. They have also shown great results for audio generation and
other tasks regarding predicting from sequences.

Will 1D convnets perform well for our task of stock price prediction? Ponder it – think
about what kind of features we get and how we're handling the sequence. If you
aren't sure, then don't worry – we're going to employ a 1D convnet-based model for
our task and see for ourselves in the next exercise.

Recurrent Neural Networks | 251

Exercise 5.04: Building a 1D Convolution-Based Model

In this exercise, we will build our first model using 1D convnets and evaluate its
performance. We'll employ a single Conv1D layer, followed by MaxPooling1D.
We'll continue using the same dataset and notebook we've been using so far. Perform
the following steps to complete this exercise:

1. Import the 1D convolution-related layers from Keras:

from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten

2. Initialize a Sequential model and add a Reshape layer to reshape each
instance as a vector (look_back, 1):

model_conv = Sequential()

model_conv.add(Reshape((look_back,1), \

 input_shape = (look_back,)))

3. Add a Conv1D layer with five filters of size 5 and relu as the activation function:

model_conv.add(Conv1D(5, 5, activation='relu'))

Note that we're using fewer filters than the sequence length. In many other
applications, the sequence can be much longer than in our example. The filters
are generally much lower in number than the input sequence.

4. Add a Maxpooling1D layer with a pool size of 5:

model_conv.add(MaxPooling1D(5))

5. Flatten the output with a Flatten layer:

model_conv.add(Flatten())

6. Add a Dense layer with a single neuron and add a linear activation layer:

model_conv.add(Dense(1))

model_conv.add(Activation('linear'))

7. Print out the summary of the model:

model_conv.summary()

252 | Deep Learning for Sequences

The model's summary is as follows:

Figure 5.31: Summary of the model

Notice the dimensions of the output from the Conv1D layer – 6 x 5. This is
expected – for a filter size of 5, we get 6 features. Also, take a look at the overall
number of parameters. It's just 36, which is indeed a very small number.

8. Compile the model with the loss as mean_squared_error and adam as the
optimizer, and then fit it on the train data for 5 epochs:

model_conv.compile(loss='mean_squared_error', optimizer='adam')

model_conv.fit(trainX, trainY, epochs=5, \

 batch_size=1, verbose=2, validation_split=0.1)

You should see the following output:

Figure 5.32: Training and validation loss

Recurrent Neural Networks | 253

From the preceding screenshot, we can see that the validation loss is pretty low
for the 1D convolution model too. We need to see whether this performance
is comparable to that of the plain RNN. Let's evaluate the performance of the
model and see whether it aligns with our expectations.

9. Use the get_model_perf function to get the RMSE for the train and test sets:

get_model_perf(model_conv)

The output is as follows:

Train RMSE: 0.04 RMSE

Test RMSE: 0.05 RMSE

This is marginally higher than that of the plain RNN model. Let's visualize the
predictions next.

10. Using the plot_pred function, plot the predictions and the actual values:

%matplotlib inline

plt.figure(figsize=[10,5])

plot_pred(model_conv)

The model output would be as follows, with the dotted lines showing the
predictions and solid lines depicting the actual values:

Figure 5.33: Plotting the predictions and actual values

254 | Deep Learning for Sequences

This is very similar to the plot from the predictions from the RNN model (Figure
5.29). But we now acknowledge that a better assessment would need interactive
visualization and zooming in to a scale where the individual points are visible.
Let's zoom in using the interactive plotting features of matplotlib using the
notebook backend by using the %matplotlib cell magic command.

11. Plot again with interactivity and zoom into the last 100 data points:

%matplotlib notebook

plot_pred(model_conv)

The output will be as follows:

Figure 5.34: Zoomed-in view of predictions

 Note

If the preceding graph is not displayed properly for some reason, run
the cell containing %matplotlib notebook for a couple of times.
Alternatively, you can also use %matplotlib inline instead of
%matplotlib notebook.

The preceding diagram shows a closer view of the predictions (dotted lines) and the
actual values (solid lines). Things aren't looking too good at this scale. The output
is very smooth, and almost looks like some kind of averaging is going on. What
happened? Is this in line with your expectations? Can you explain this output?

Recurrent Neural Networks | 255

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we built and trained our 1D convolution-based model for stock price
prediction. We saw that the number of parameters is very low, and that the training
time was much lower.

Performance of 1D Convnets

To explain the result in the previous exercise, we need to understand what is
happening after we extract the subsequences using the Conv1D layer. The sequence
in the data is being captured, that is, in the individual filters. But is the sequence being
retained after that, and are we really exploiting the sequence in the data? No, we are
not. Once the patches have been extracted, they are being treated independently. It is
for this reason that the performance is not great.

So, why did we state that 1D convnets do great on sequence tasks previously? How
do you make them perform well for our task? 1D convnets do very well on tasks
regarding text, especially classification, where the short, local sequence has very high
importance and following the order in the entire sequence (say, 200 terms) doesn't
provide a huge benefit. For time series tasks, we need order in the entire sequence.
There are ways to induce order consideration for tasks such as time series tasks, but
they aren't great.

Using 1D Convnets with RNNs

We saw the benefits of 1D convnets – speed, feature reduction, lower number of
parameters, learning local features, and much more. We also saw that RNNs provide
very powerful and flexible architectures for handling sequences but have a lot of
parameters and are expensive to train. One possible approach can be to combine
both – the benefit of the representation and feature reduction from 1D convnets in
the initial layers, and the benefit of the sequence processing power of RNNs in the
following layers. Let's try it out for our task.

https://packt.live/2ZctArW
https://packt.live/38EDOEA

256 | Deep Learning for Sequences

Exercise 5.05: Building a Hybrid (1D Convolution and RNN) Model

In this exercise, we will build a model that will employ both 1D convolutions and RNNs
and assess the change in performance. Making a hybrid model is straightforward –
we'll begin with the convolution layer, the output of which is features in a sequence.
The sequence can be fed straight into the RNN layer. Therefore, combining the 1D
convolutions with RNNs is as simple as following the Conv1D layer with an RNN layer.
We'll continue this exercise in the same Jupyter Notebook. Perform the following
steps to complete this exercise:

1. Initialize a sequential model, add a Reshape layer (as in the preceding exercise),
and add a Conv1D layer with five filters and a filter size 3:

model_comb = Sequential()

model_comb.add(Reshape((look_back,1), \

 input_shape = (look_back,)))

model_comb.add(Conv1D(5, 3, activation='relu'))

2. Next, add a SimpleRNN layer with 32 neurons, followed by a Dense layer and
an Activation layer:

model_comb.add(SimpleRNN(32))

model_comb.add(Dense(1))

model_comb.add(Activation('linear'))

3. Print out the model summary:

model_comb.summary()

The output will be as follows:

Figure 5.35: Summary of the hybrid (1D convolution and RNN) model

Recurrent Neural Networks | 257

The output from the Conv1D layer is 8 × 5 – 8 features from 5 filters. The overall
number of parameters is slightly higher than the plain RNN model. This is
because the sequence size we're dealing with is very low. If we were dealing
with larger sequences, we would have seen a reduction in the parameters. Let's
compile and fit the model.

4. Compile and fit the model on the training data for three epochs:

model_comb.compile(loss='mean_squared_error', optimizer='adam')

model_comb.fit(trainX, trainY, epochs=3, \

 batch_size=1, verbose=2, validation_split=0.1)

The model training output is as follows:

Figure 5.36: Training and validation loss

Let's assess the performance first by looking at RMSE. We don't expect this to be
very useful for our example, but let's print it out as good practice.

5. Print the RMSE for the train and test set using the get_model_perf function:

get_model_perf(model_comb)

You'll get the following output:

Train RMSE: 0.02 RMSE

Test RMSE: 0.03 RMSE

The values seem lower, but only a very close look will help us assess the
performance of the model.

6. Plot the prediction versus actual in interactive mode and zoom in on the last
100 points:

%matplotlib notebook

plot_pred(model_comb)

258 | Deep Learning for Sequences

The output of the preceding command will be as follows:

Figure 5.37: Plot of the combined model

Following is a zoomed-in view of the predictions:

Figure 5.38: Zoomed-in view of predictions

Recurrent Neural Networks | 259

Note

If the graphs presented below are not displayed properly for some reason,
run the cell containing %matplotlib notebook for a couple of times.
Alternatively, you can also use %matplotlib inline instead of
%matplotlib notebook.

This result is extremely good. The prediction (dotted lines) is extremely close to the
actual (solid lines) for the test data – capturing not only the level but also the minute
variations very well. There is also some effective regularization going on when the
1D convnet is extracting patches from the sequence. These features are being fed
in sequence to the RNN, which is using its raw power to provide the output we see.
There is indeed merit in combining 1D convnets with RNNs.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we saw how we can combine 1D convnets and RNNs to form a hybrid
model that can provide high performance. We acknowledge that there is merit in
trying this combination for sequence processing tasks.

https://packt.live/2ZctArW
https://packt.live/38EDOEA

260 | Deep Learning for Sequences

Activity 5.01: Using a Plain RNN Model to Predict IBM Stock Prices

We have seen RNNs in action and can now appreciate the kind of power they bring in
sequence prediction tasks. We also saw that RNNs in conjunction with 1D convnets
provide great results. Now, let's employ these ideas in another stock price prediction
task, this time predicting the stock price for IBM. The dataset can be downloaded
from https://packt.live/3fgmqIL. You will visualize the data and understand the patterns.
From your understanding of the data, choose a lookback period and build an
RNN-based model for prediction. The model will have a 1D convnet as well as a plain
RNN layer. You will also employ dropout to prevent overfitting.

Perform the following steps to complete this exercise:

1. Load the .csv file, reverse the index, and plot the time series (the Close
column) for visual inspection.

2. Extract the values for Close from the DataFrame as a numpy array and plot
them using matplotlib.

3. Assign the final 25% data as test data and the first 75% as train data.

4. Using MinMaxScaler from sklearn, scale the train and test data.

5. Using the get_lookback function we defined in this chapter, get lookback
data for the train and test data using a lookback period of 15.

6. From Keras, import all the necessary layers for employing plain RNNs
(SimpleRNN, Activation, Dropout, Dense, and Reshape) and 1D
convolutions (Conv1D). Also, import mean_squared_error.

7. Build a model with a 1D convolution layer (5 filters of size 3) and an RNN
layer with 32 neurons. Add 25% dropout after the RNN layer. Print the
model's summary.

8. Compile the model with the mean_squared_error loss and the adam
optimizer. Fit this on the train data in five epochs with a validation split of 10%
and a batch size of 1.

9. Using the get_model_perf method, print the RMSE of the model.

10. Plot the predictions – the entire view, as well as a zoomed-in one for a close
assessment of the performance.

https://packt.live/3fgmqIL

Summary | 261

The zoomed-in view of the predictions (dotted lines) versus the actuals (solid lines)
should be as follows:

Figure 5.39: Zoomed-in view of predictions

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 410.

Summary
In this chapter, we looked at the considerations of working with sequences. There
are several tasks that require us to exploit information contained in a sequence,
where sequence-agnostic models would fare poorly. We saw that using RNNs is a
very powerful approach to sequence modeling – the architecture explicitly processes
the sequence and considers the information accumulated so far, along with the new
input, to generate the output. Even very simple RNN architectures performed very
well on our stock price prediction task. We got the kind of results that would take a lot
of effort to get using classical approaches.

262 | Deep Learning for Sequences

We also saw that 1D convolutions can be employed in sequence prediction tasks. 1D
convolutions, like their 2D counterparts for images, learn local features in a sequence.
We built a 1D convolution model that didn't fare too well on our task. The final model
that we built combined 1D convolutions and RNNs and provided excellent results
regarding the stock price prediction task.

In the next chapter, we will discuss models that are variations of RNNs that are even
more powerful. We will also discuss architectures that extract the latent power of
the idea of the RNN. We will apply these "RNNs on steroids" to an important task in
natural language processing – sentiment classification.

Overview

In this chapter, we will study and implement advanced models and
variations of the plain Recurrent Neural Network (RNN) that overcome
some of RNNs' practical drawbacks and are among the best performing
deep learning models at the moment. We will start by understanding the
drawbacks of plain RNNs and see how the novel idea of Long Short-Term
Memory overcomes them. We will then see and implement a Gated
Recurrent Unit based model. We will also work with bidirectional and
stacked RNNs and explore attention-based models. By the end of this
chapter, you will have built and assessed the performance of these models
on a sentiment classification task, observing for yourself the trade-offs in
choosing the different models.

LSTMs, GRUs, and Advanced

RNNs

6

266 | LSTMs, GRUs, and Advanced RNNs

Introduction
Let's say you're working with product reviews for a mobile phone and your task is
to classify the sentiment in the reviews as being positive or negative. You encounter
a review that says: "The phone does not have a great camera, or an amazingly vivid
display, or an excellent battery life, or great connectivity, or other great features that make
it the best." Now, when you read this, you can easily identify that the sentiment in the
review is negative, despite the presence of many positive phrases such as "excellent
battery life" and "makes it the best". You understand that the presence of the term
"not" right toward the beginning of the text negates everything else that comes after.

Will the models we've created so far be able to identify the sentiment in such a case?
Probably not, because if your models don't realize that the term "not" toward the
beginning of the sentences is important and needs to be connected strongly to the
output several terms later, they won't be able to identify the sentiment correctly. This,
unfortunately, is a major drawback of plain RNNs.

In the previous chapter, we looked at a couple of deep learning approaches for
dealing with sequences, that is, one-dimensional convolutions and RNNs. We saw
that RNNs are extremely powerful models that provide us with a great amount of
flexibility to handle different sequence tasks. The plain RNNs that we saw have been
subject to plenty of research. Now, we will look at some approaches that have been
built on top of RNNs to create new, powerful models that overcome the drawbacks
of RNNs. We will look at LSTM, GRUs, stacked and bidirectional LSTMs, and attention-
based models. We will apply these models to a sentiment classification task, thereby
bringing together the concepts discussed in Chapter 4, Deep Learning for Text –
Embeddings, and Chapter 5, Deep Learning for Sequences, as well.

Long-Range Dependence/Influence
The sample mobile phone review we saw in the previous section was an example
of a long-range dependence/influence – where a term/value in a sequence has an
influence on the assessment of a lot of the subsequent terms/values. Consider the
following example, where you need to fill in the blank with a missing country name:
"After a top German university granted her admission for her Masters in Dentistry, Hina
was extremely excited to start this new phase of her career with international exposure
and couldn't wait till the end of the month to book her flight to ____."

The Vanishing Gradient Problem | 267

The correct answer, of course, is Germany, arriving at which would require you to
understand the importance of the term "German", which appears at the beginning of
the sentence, on the outcome at the end of the sentence. This is another example of
long-range dependence. The following figure shows the long-range dependence of
the answer, "Germany", on the term "German" appearing early in the sentence:

Figure 6.1: Long-range dependence

To get the best outcome, we need to be able to handle long-range dependencies. In
the context of deep learning models and RNNs, this would mean that learning (or the
backpropagation of errors) needs to happen smoothly and effectively over many
time steps. This is easier said than done, primarily because of the vanishing
gradient problem.

The Vanishing Gradient Problem
One of the biggest challenges while training standard feedforward deep neural
networks is the vanishing gradient problem (as discussed in Chapter 2, Neural
Networks). As the model gets more and more layers, backpropagating the errors
all the way back to the initial layers becomes increasingly difficult. Layers close to
the output will be "learning"/updated at a good pace, but by the time the error
propagates to the initial layers, its value will have diminished greatly and have little or
no effect on the parameters for the initial layers.

268 | LSTMs, GRUs, and Advanced RNNs

With RNNs, this problem is further compounded, as the parameters need to be
updated not only along the depth but also for the time steps. If we have one hundred
time steps in the inputs (which isn't uncommon, especially when working with text),
the network needs to propagate the error (calculated at the 100th time step) all the
way back to the first time step. For plain RNNs, this task can be a bit too much to
handle. This is where RNN variants can come in useful.

Note

Another practical issue with training deep networks is the exploding
gradient problem, where the gradient values get very high – too high to
be represented by the system. This issue has a rather simple workaround
called "Gradient Clipping", which means capping the values of
the gradient.

Sequence Models for Text Classification
In Chapter 5, Deep Learning for Sequences, we learned that RNNs perform extremely
well on sequence-modeling tasks and provide high performance on text-related
tasks. In this chapter, we will use plain RNNs and variants of RNNs on a sentiment
classification task: processing the input sequence and predicting whether the
sentiment is positive or negative.

We'll use the IMDb reviews dataset for this task. The dataset contains 50,000 movie
reviews, along with their sentiment – 25,000 highly polar movie reviews for training
and 25,000 for testing. A few reasons for using this dataset are as follows:

• It is very conveniently available to load Keras (tokenized version) with a
single command.

• The dataset is commonly used for testing new approaches/models. This should
help you compare your results with other approaches easily.

• Longer sequences in the data (IMDb reviews can get very long) help us assess
the differences between the variants of RNNs better.

Let's get started by building our first model using plain RNNs and then benchmark
the future model performances against that of the plain RNN. Let's start with data
preprocessing and formatting the model.

Sequence Models for Text Classification | 269

Loading Data

Note

Make sure that you work on all the exercises and example codes in this
chapter in the same Jupyter Notebook. Note that the code in this section
will load the dataset. To ensure all exercises and example codes that follow
work, please ensure that you do not skip this section. You can access the
complete code for the exercises at https://packt.live/31ZPO2g.

To begin, you need to start a new Jupyter Notebook and import the imdb module
from the Keras datasets. Note that unless mentioned otherwise, the code and
exercises for the rest of this chapter should continue in the same Jupyter Notebook:

from tensorflow.keras.datasets import imdb

With the module imported, importing the dataset (tokenized and separated into train
and test sets) is as easy as running imdb.load_data. The only parameter we need
to provide is the vocabulary size we wish to use. Recall that the vocabulary size is the
total number of unique terms we wish to consider for the modeling process. When
we specify a vocabulary size, V, we work with the top V terms in the data. Here, we will
specify a vocabulary size of 8,000 for our models (an arbitrary choice; you can modify
this as desired) and load the data using the load_data method, as shown here:

vocab_size = 8000

(X_train, y_train), (X_test, y_test) = imdb.load_data\

 (num_words=vocab_size)

Let's inspect the X_train variable to see what we are working with. Let's print the
type of it and the type of constituting elements, and also have a look at one of
the elements:

print(type(X_train))

print(type(X_train[5]))

print(X_train[5])

https://packt.live/31ZPO2g

270 | LSTMs, GRUs, and Advanced RNNs

We will see the following output:

<class 'numpy.ndarray'>

<class 'list'>

[1, 778, 128, 74, 12, 630, 163, 15, 4, 1766, 7982, 1051,

 2, 32, 85, 156, 45, 40,

 148, 139, 121, 664, 665, 10, 10, 1361, 173, 4, 749, 2, 16,

 3804, 8, 4, 226, 65,

 12, 43, 127, 24, 2, 10, 10]

The X_train variable is a numpy array – each element of the array is a list
representing the text for a single review. The terms in the text are present as
numerical tokens instead of raw tokens. This is a very convenient format.

The next step is to define an upper limit on the length of the sequences that we'll
work with and limit all sequences to the defined maximum length. We'll use 200 – an
arbitrary choice, in this case – to quickly get started with the model-building process*.
For our purpose, we'll pick 200 steps so that the networks don't get too heavy, and
because 200 time steps are sufficient to demonstrate the different RNN approaches.
Let's define the maxlen variable:

maxlen = 200

The next step is to get all our sequences to the same length using the
pad_sequences utility from Keras.

Note

*Ideally, we would analyze the lengths of the sequences and identify one
that covers most of the reviews. We'll perform these steps in the activity at
the end of the chapter, in which we'll use ideas from not only the current
chapter, but also from Chapter 4, Deep Learning for Text – Embeddings, and
Chapter 5, Deep Learning for Sequences, bringing this all together in a
single activity.

Sequence Models for Text Classification | 271

Staging and Preprocessing Our Data

The pad_sequences utility from the sequences module in Keras helps us in
getting all the sequences to a specified length. If the input sequence is shorter than
the specified length, the utility pads the sequence with a reserved token (indicating
a blank/missing). If the input sequence is longer than the specified length, the utility
truncates the sequence to limit it. In the following example, we will apply the
pad_sequences utility to our test and train datasets:

from tensorflow.keras import preprocessing

X_train = preprocessing.sequence.pad_sequences\

 (X_train, maxlen=maxlen)

X_test = preprocessing.sequence.pad_sequences\

 (X_test, maxlen=maxlen)

To understand the result of the steps, let's see the output for a particular instance in
the training data:

print(X_train[5])

The processed instance is as follows:

Figure 6.2: Result of pad_sequences

272 | LSTMs, GRUs, and Advanced RNNs

We can see that there are plenty of 0s at the beginning of the result. As you may have
inferred, this is the padding that's done by the pad_sequence utility because the
input sequence was shorter than 200. Padding at the beginning of the sequence is
the default behavior of the utility. For a sequence that is less than the specified limit,
the truncation, by default, is done from the left – that is, the last 200 terms would be
retained. All instances in the output now have 200 terms. The dataset is now ready
for modeling.

Note

The default behavior of the utility is to pad the beginning of the sequence
and truncate from the left. These can be important hyperparameters. If you
believe that the first few terms are the most important for the prediction,
you may want to truncate the last terms by specifying the "truncating"
parameter as "post". Similarly, to have padding toward the end of the
sequence, you can set "padding" to "post".

The Embedding Layer
In Chapter 4, Deep Learning for Text – Embeddings, we discussed that we can't feed
text directly into a neural network, and therefore need good representations. We
discussed that embeddings (low-dimensional, dense vectors) are a great way of
representing text. To pass the embeddings into the neural network's layers, we need
to employ the embedding layer.

The functionality of the embedding layer is two-fold:

• For any input term, perform a lookup and return its word embedding/vector

• During training, learn these word embeddings

The part about looking up is straightforward – the word embeddings are stored as
a matrix of the V × D dimensionality, where V is the vocabulary size (the number
of unique terms considered) and D is the length/dimensionality of each vector. The
following figure illustrates the embedding layer. The input term, "life", is passed to
the embedding layer, which performs a lookup and returns the corresponding vector
of length D. This vector, which is the representation for the term life, is fed to the
hidden layer.

The Embedding Layer | 273

What do we mean by learning these embeddings while training the predictive model?
Aren't word embeddings learned by using an algorithm such as word2vec, which
tries to predict the center word based on context terms (remember the CBOW
architecture we discussed in Chapter 4, Deep Learning for Text – Embeddings)? Well, yes
and no:

Figure 6.3: Embedding layer

The word2vec approach had the objective of learning a representation that captures
the meaning of the term. Therefore, predicting the target word based on context was
a perfect formulation for the objective. In our case, the objective is different – we wish
to learn representations that help us best predict the sentiment in the text. It makes
sense, then, to learn the representation that works explicitly toward our objective.

The embedding layer is always the first layer in the model. You can follow it up with
any architecture of your choice (RNNs, in our case). We randomly initialize the vectors,
essentially the weights in the embedding layer. While the model trains, the weights
are updated in a way that predicts the outcome in a better way. The weights learned,
and therefore the word vectors, are then tuned to the task. This is a very useful step –
why use generic representations when you can tune them to your task?

274 | LSTMs, GRUs, and Advanced RNNs

The embedding layer in Keras has two main parameters:

• input_dim : The number of unique terms in the vocabulary, that is, the
vocabulary size

• output_dim : The dimension of the embedding/the length of the word vector

The input_dim parameter needs to be set to the vocabulary size being employed.
The output_dim parameter specifies the length of the embedding vector for
each term.

Note that the embedding layer in Keras also allows you to use your own specified
weight matrix in the embedding layer. This means you can use pre-trained
embeddings (such as GloVe, or even embeddings you trained in a different model) in
the embedding layer. The GloVe model has been trained on billions of tokens and it
could be useful to leverage this powerful general representation.

Note

If you use pre-trained embeddings, you also have the option to make them
trainable in your model – essentially, use GloVe embeddings as a starting
point and fine-tune them for your task. This is a great example of transfer
learning for text.

Building the Plain RNN Model | 275

Building the Plain RNN Model
In the next exercise, we will build our first model for the sentiment classification task
using plain RNNs. The model architecture we'll use is depicted in the following figure,
which demonstrates how the model would process an input sentence "Life is
good", with the term "Life" coming in at time step T=0 and "good" appearing at
time step T=2. The model will process the inputs one by one, using the embedding
layer to look up the word embeddings that will be passed to the hidden layers. The
classification will be done when the final term, "good", is processed at time step T=2.
We'll use Keras to build and train our models:

Figure 6.4: Architecture using an embedding layer and RNN

276 | LSTMs, GRUs, and Advanced RNNs

Exercise 6.01: Building and Training an RNN Model for Sentiment Classification

In this exercise, we will build and train an RNN model for sentiment classification.
Initially, we will define the architecture for the recurrent and prediction layers, and
we will assess the model's performance on the test data. We will add the embedding
layer and some dropout and complete the model definition by adding the RNN layer,
dropout, and a dense layer to finish. Then, we'll check the accuracy of the predictions
on the test data to assess how well the model generalizes. Follow these steps to
complete this exercise:

1. Let's begin by setting the seed for numpy and tensorflow random number
generation, to get, to the best extent possible, reproducible results. We'll import
numpy and tensorflow and set the seed using the following commands:

import numpy as np

import tensorflow as tf

np.random.seed(42)

tf.random.set_seed(42)

Note

Even though we have set the seeds for numpy and tensorflow to
achieve reproducible results, there are a lot more causes for variation,
owing to which you may get a result that's different from ours. This applies
to all the models we'll use from now on. While the values you see may be
different, the output you see should largely agree with ours. If the model's
performance is very different, you may want to tweak the number of epochs
– the reason for this being that the weights in neural networks are initialized
randomly, so the starting points for you and us could be slightly different,
and we may reach a similar position when training a different number
of epochs.

Building the Plain RNN Model | 277

2. Now, let's continue by importing all the necessary packages and layers
and initializing a sequential model named model_rnn using the
following commands:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers \

import SimpleRNN, Flatten, Dense, Embedding, \

SpatialDropout1D, Dropout

model_rnn = Sequential()

3. Now, we need to specify the embedding layer. The input_dim parameter
needs to be set to the vocab_size variable. For the output_dim parameter,
we'll choose 32. Recall from Chapter 4, Deep Learning for Text – Embeddings,
that this is a hyperparameter and you may want to experiment with this to get
better results. Let's specify the embedding layer and use dropout (to minimize
overfitting) using the following commands:

model_rnn.add(Embedding(vocab_size, output_dim=32))

model_rnn.add(SpatialDropout1D(0.4))

Note that the dropout employed here is SpatialDropout1D – this version
performs the same function as regular dropout layer, but instead of dropping
individual elements, it drops entire one-dimensional feature maps (vectors, in
our case).

4. Add a SimpleRNN layer with 32 neurons to the model (chosen arbitrarily;
another hyperparameter to tune):

model_rnn.add(SimpleRNN(32))

5. Next, add a dropout layer with 40% dropout (again, an arbitrary choice):

model_rnn.add(Dropout(0.4))

6. Add a dense layer with a sigmoid activation function to complete the model
architecture. This is the output layer that makes the prediction:

model_rnn.add(Dense(1, activation='sigmoid'))

7. Compile the model and view the model summary:

model_rnn.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', metrics=['accuracy'])

model_rnn.summary()

278 | LSTMs, GRUs, and Advanced RNNs

The model summary is as follows:

Figure 6.5: Summary of the plain RNN model

We can see that there are 258,113 parameters, most of which are present in
the embedding layer. The reason for this is that the word embeddings are being
learned during the training – so we're learning the embedding matrix, which is of
dimensionality vocab_size(8000) × output_dim(32).

Let's proceed and train the model (with the hyperparameters that we've
observed to provide the best result with this data and architecture).

8. Fit the model on the train data with a batch size of 128 for 10 epochs (both of
these are hyperparameters that you can tune). Use a validation split of 0.2 –
monitoring this will give us a sense of the model performance on unseen data:

history_rnn = model_rnn.fit(X_train, y_train, \

 batch_size=128, \

 validation_split=0.2, \

 epochs = 10)

Building the Plain RNN Model | 279

The training output for the last five epochs will be as follows. Depending on your
system configuration, this step could take more or less time than it did here
for us:

Figure 6.6: Training the plain RNN model – the final five epochs

From the training output, we can see that the validation accuracy goes up to
about 86%. Let's make predictions on the test set and check the performance of
the model.

9. Make predictions on the test data using the predict_classes method of the
model and use the accuracy_score method from sklearn:

y_test_pred = model_rnn.predict_classes(X_test)

from sklearn.metrics import accuracy_score

print(accuracy_score(y_test, y_test_pred))

The accuracy of the test is as follows:

0.85128

We can see that the model does a decent job. We used a simple architecture
with 32 neurons and used a vocabulary size of just 8000. Tweaking these and
other hyperparameters may get you better results and you are encouraged to
do so.

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZPO2g.

You can also run this example online at https://packt.live/2Oa2trm.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/31ZPO2g
https://packt.live/2Oa2trm

280 | LSTMs, GRUs, and Advanced RNNs

 In this exercise, we have seen how to build an RNN-based model for text. We saw
how an embedding layer can be used to derive word vectors for the task at hand.
These word vectors are the representations for each incoming term, which are
passed to the RNN layer. We have seen that even a simple architecture can give us
good results. Now, let's discuss how this model can be used to make predictions on
new, unseen reviews.

Making Predictions on Unseen Data
Now that you've trained your model on some data and assessed its performance on
the test data, the next thing is to learn how to use this model to predict the sentiment
for new data. That is the purpose of the model, after all – being able to predict the
sentiment for data previously unseen by the model. Essentially, for any new review in
the form of raw text, we should be able to classify its sentiment.

The key step for this would be to create a process/pipeline that converts the raw text
into a format the predictive model understands. This would mean that the new text
would need to undergo exactly the same preprocessing steps that were performed
on the text data that was used to train the model. The function for preprocessing
needs to return formatted text for any input raw text. The complexity of this function
depends on the steps performed on the train data. If tokenization was the only
preprocessing step performed, then the function only needs to perform tokenization.

Our model (model_rnn) was trained on IMDb reviews that were tokenized, had their
case lowered, had punctuation removed, had a defined vocabulary size, and were
converted into a sequence of indices. Our function/pipeline for preparing data for the
RNN model needs to perform the same steps. Let's work toward creating our own
function. To begin, let's create a new variable called "inp_review" containing the
text "An excellent movie" using the following code. This is the variable containing the
raw review text:

inp_review = "An excellent movie!"

The sentiment in the text is positive. If the model is working well enough, it should
predict the sentiment as positive.

First, we must tokenize this text into its constituent terms, normalize its case, and
remove punctuation. To do so, we need to import the text_to_word_sequence
utility from Keras using the following code:

from tensorflow.keras.preprocessing.text \

import text_to_word_sequence

Making Predictions on Unseen Data | 281

To check if it works as we expect, we can apply this to the inp_review variable, as
shown in the following code:

text_to_word_sequence(inp_review)

The tokenized sentence will be as follows:

['an', 'excellent', 'movie']

We can see that it works just as expected – the case has been normalized, the
sentences have been tokenized, and punctuation has been removed from the input
text. The next step would be to use a defined vocabulary for the data. This would
require using the same vocabulary that was used by TensorFlow when we loaded
the data. The vocabulary and the term-to-index mapping can be loaded using the
get_word_index method from the imdb module (that we employed to load the
code). The following code can be used to load the vocabulary into a dictionary named
word_map:

word_map = imdb.get_word_index()

This dictionary contains the mapping for about 88.6 K terms that were available in
the raw reviews data. We loaded the data with a vocabulary size of 8000, thereby
using the first 8000 indices from the mapping. Let's create our mapping with limited
vocabulary so that we can use the same terms/indices that the training data used.
We'll limit the mapping to 8000 terms by sorting the word_map variable on the
index and picking the first 8000 terms, as follows:

vocab_map = dict(sorted(word_map.items(), \

 key=lambda x: x[1])[:vocab_size])

The vocab map will be a dictionary containing the term for index mapping for the
8000 terms in the vocabulary. Using this mapping, we'll convert the tokenized
sentence into a sequence of term indices by performing a lookup for each term and
returning the corresponding index. Using the following code, we'll define a function
that accepts raw text, applies the text_to_word_sequence utility to it, performs
a lookup from vocab_map, and returns the corresponding sequence of integers:

def preprocess(review):

 inp_tokens = text_to_word_sequence(review)

 seq = []

 for token in inp_tokens:

 seq.append(vocab_map.get(token))

 return seq

282 | LSTMs, GRUs, and Advanced RNNs

We can apply this function to the inp_review variable, like so:

preprocess(inp_review)

The output is as follows:

[32, 318, 17]

This is the sequence of term indices corresponding to the raw text. Note that the
data is now in the same format as the IMDb data we loaded. This sequence of indices
can be fed to the RNN model (using the predict_classes method) to classify the
sentiment, as shown in the following code. If the model is working well enough, it
should predict the sentiment as positive:

model_rnn.predict_classes([preprocess(inp_review)])

The output prediction is 1 (positive), just as we expected:

array([[1]])

Let's apply the function to another raw text review and supply it to the model for
prediction. Let's update the inp_review variable so that it contains the text "Don't
watch this movie – poor acting, poor script, bad direction."
The sentiment in the review is negative. We expect the model to classify it as such:

inp_review = "Don't watch this movie"\

 " - poor acting, poor script, bad direction."

Let's apply our preprocessing function to the inp_review variable and make a
prediction using the following code:

model_rnn.predict_classes([preprocess(inp_review)])

The prediction is 0, as shown here:

array([[0]])

LSTMs, GRUs, and Other Variants | 283

The predicted sentiment is negative, just as we would expect the model to behave.

We applied this pipeline in the form of a function on a single review, but you can very
easily apply this to a whole collection of reviews to make predictions using the model.
You are now ready to classify the sentiment of any new review using the RNN model
we trained.

Note

The pipeline we built here is specifically for this dataset and model. This is
not a generic processing function that you can utilize for predictions from
any model. The vocabulary used, the cleanup that was done, the patterns
the model learned – these were all specific to this task and dataset. For any
other model, you need to create your pipeline accordingly.

The higher-level approach can be employed to make processing pipelines for
other models too. Depending on the data, the preprocessing steps, and setting up
where the model will be deployed, the pipeline can vary. All these factors also affect
the steps you may want to include in the model building process. Therefore, we
encourage to you to start thinking about these aspects right away when you begin the
whole modeling process.

We saw how to make predictions on unseen data using the trained RNN model,
thereby giving us an understanding of the end-to-end process. In the next section,
we'll begin working with variants of RNNs. The implementation-related ideas we've
discussed so far are applicable to all the subsequent models.

LSTMs, GRUs, and Other Variants
The idea behind plain RNNs is very powerful and the architecture has shown
tremendous promise. Due to this, researchers have experimented with the
architecture of RNNs to find ways to overcome the one major drawback (the
vanishing gradient problem) and exploit the power of RNNs. This led to the
development of LSTMs and GRUs, which have now practically replaced RNNs. Indeed,
these days, when we refer to RNNs, we usually refer to LSTMs, GRUs, or their variants.

284 | LSTMs, GRUs, and Advanced RNNs

This is because these variants are designed specifically to handle the vanishing
gradient problem and learn long-range dependencies. Both approaches have
outperformed plain RNNs significantly in most tasks around sequence modeling, and
the difference is especially higher for long sequences. The paper titled Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation (available
at https://arxiv.org/abs/1406.1078) performs an empirical analysis of the performance of
plain RNNs, LSTMs, and GRUs. How have these approaches overcome the drawbacks
of plain RNNS? We'll understand this in the next section, where we'll discuss LSTMs
in detail.

LSTMs

Let's think about this for a moment. Knowing the architecture of the plain RNN, how
can we tweak it, or what can be done differently to capture long-range influences?
We can't add more layers; that would be counterproductive for sure, as every added
layer would compound the problem. One idea (available at https://pubmed.ncbi.nlm.
nih.gov/9377276), proposed in 1997 by Sepp Hochreiter and Jurgen Schmidhuber, is
to use an explicit value (state) that does not pass through activations. If we had a
cell (corresponding to a neuron for plain RNNs) value flowing freely and not through
activations, this value could potentially help us model long-range dependence. This is
the first key difference in an LSTM – an explicit cell state.

The cell state can be thought of as a way to identify and store information over
multiple time steps. Essentially, we are identifying some value as the long-term
memory of the network that helps us predict the output better and taking care to
retain this value as long as required.

But how do we regulate the flow of this cell state? How do we decide when to update
the value and by how much? For this, Hochreiter and Schmidhuber proposed the use
of gating mechanisms as a way to regulate how and when to update the value of the
cell state. This is the other key difference in an LSTM. The freely flowing cell state,
together with the regulatory mechanisms, allow the LSTM to perform extremely well
on longer sequences and provide it with all its predictive power.

Note

A detailed treatment of the inner workings of the LSTM and the associated
math is beyond the scope of this book. For those interested in reading
further, https://packt.live/3gL42Ib is a good reference that provides a good
visual understanding of LSTMs.

https://arxiv.org/abs/1406.1078
https://pubmed.ncbi.nlm.nih.gov/9377276
https://pubmed.ncbi.nlm.nih.gov/9377276
https://packt.live/3gL42Ib

LSTMs, GRUs, and Other Variants | 285

Let's understand the intuition behind the working of the LSTM. The following figure
shows the internals of the LSTM cell. Apart from the usual outputs, that is, the hidden
state, the LSTM cell also outputs a cell "state". The hidden state holds the short-term
memory, while the cell state holds the long-term memory:

Figure 6.7: The LSTM cell

This view of the internals can be intimidating, which is why we'll look at a more
abstracted view, as can be seen in Figure 6.8. The first thing to notice is that the only
operations that take place on the cell state are two linear operations – a multiplication
and an addition. The cell state does not pass through any activation function. This
is why we said that the cell state flows freely. This free-flow setup is also called a
"Constant Error Carousel" – a moniker you don't need to remember.

286 | LSTMs, GRUs, and Advanced RNNs

The output of the FORGET block is multiplied by the cell state. Because the output
of this block is between 0 and 1 (modeled by the sigmoid activation), a multiplication
of this with the cell state will regulate how much of the previous cell state is to
be forgotten. If the FORGET block outputs 0, the previous cell state is completely
forgotten; while for output 1, the cell state is completely retained. Note that the
inputs to the FORGET gate are the output from the hidden layer from the previous
time step (ht-1) and the new input at the present time step, xt (for a layer deep in the
network, this could be the output from the previous hidden layer):

Figure 6.8: Abstracted view of the LSTM cell

In the preceding figure, we can see that after the cell state is multiplied by the
FORGET block's result, the next decision is how much to update the cell state by.
This comes from the UPDATE block's output, which is added (note the plus sign)
to the processed cell state. This way, the processed cell state is updated. That's all
the operations that are performed on the previous cell state, (Ct-1), to give us the
new cell state, (Ct), as an output. This is how the long-term memory of the cell is
regulated. The cell also needs to update the hidden state. This operation takes place
in the OUTPUT block and is pretty much the same as the update in a plain RNN.
The only difference is that the explicit cell state is multiplied by the output from the
sigmoid to form the final hidden state, ht.

Now that we understand the individual blocks/gates, let's see them marked on the
following detailed figure. This should clarify how these gating mechanisms come
together to regulate the flow of information in an LSTM:

LSTMs, GRUs, and Other Variants | 287

Figure 6.9: The LSTM cell explained

To make this example more concrete, let's take a look at the following figure and
understand how the cell state is updated. We can assume the previous cell state,
(Ct-1), was 5. How much of this value should be propagated is decided by the output
of the FORGET gate. The output value of the FORGET gate is multiplied by the
previous cell state, Ct-1. In this case, the output of the forget block is 0.5, resulting in
2.5 as the processed cell state being passed. This value (2.5) then encounters the
addition from the UPDATE gate. Since the UPDATE gate output value of -0.8, the
result of the addition is 1.7. This is the final, updated cell state, Ct, that is passed to
the next time step:

Figure 6.10: LSTM cell state update example

288 | LSTMs, GRUs, and Advanced RNNs

Parameters in an LSTM
LSTMs are built on plain RNNs. If you simplified the LSTM and removed all the gates,
retaining only the tanh function for the hidden state update, you would have a plain
RNN. The number of activations that the information – the new input data at time t
and the previous hidden state at time t-1 (xt and ht-1) – passes through in an LSTM
is four times the number that it passes through in a plain RNN. The activations are
applied once in the forget gate, twice in the update gate, and once in the output gate.
The number of weights/parameters in an LSTM is, therefore, four times the number
of parameters in a plain RNN.

In Chapter 5, Deep Learning For Sequences, in the section titled Parameters in an RNN,
we calculated the number of parameters in a plain RNN and saw that we already
have a quite a few parameters to work with (n2 + nk + nm, where n is the number
of neurons in the hidden layer, m is the number of inputs, and k is the dimension of
the output layer). With LSTMs, we saw that the number is four times this. Needless to
say, we have a lot of parameters in an LSTM, and that isn't necessarily a good thing,
especially when working with smaller datasets.

Exercise 6.02: LSTM-Based Sentiment Classification Model

In this exercise, we will build a simple LSTM-based model to predict sentiment on our
data. We will continue with the same setup we used previously (that is, the number
of cells, embedding dimensions, dropout, and so on). Thus, you must continue this
exercise in the same Jupyter Notebook. Follow these steps to complete this exercise:

1. Import the LSTM layer from Keras layers:

from tensorflow.keras.layers import LSTM

2. Instantiate the sequential model, add the embedding layer with the appropriate
dimensions, and add a 40% spatial dropout:

model_lstm = Sequential()

model_lstm.add(Embedding(vocab_size, output_dim=32))

model_lstm.add(SpatialDropout1D(0.4))

3. Add an LSTM layer with 32 cells:

model_lstm.add(LSTM(32))

Parameters in an LSTM | 289

4. Add the dropout (40% dropout) and dense layers, compile the model, and print
the model summary:

model_lstm.add(Dropout(0.4))

model_lstm.add(Dense(1, activation='sigmoid'))

model_lstm.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', metrics=['accuracy'])

model_lstm.summary()

The model summary is as follows:

Figure 6.11: Summary of the LSTM model

We can see from the model summary that the number of parameters in the
LSTM layer is 8320. A quick check can confirm that this is exactly four times the
number of parameters in the plain RNN layer we saw in Exercise 6.01, Building
and Training an RNN Model for Sentiment Classification, which is in line with our
expectations. Next, let's fit the model on the training data.

5. Fit on the training data for 5 epochs (this gives us the best result for the model)
with a batch size of 128:

history_lstm = model_lstm.fit(X_train, y_train, \

 batch_size=128, \

 validation_split=0.2, \

 epochs=5)

290 | LSTMs, GRUs, and Advanced RNNs

The output from the training process is as follows:

Figure 6.12: LSTM training output

Notice that training the LSTM took much longer than it does with plain RNNs.
Again, considering the architecture of the LSTM and the sheer number of
parameters, this was expected. Also, note that the validation accuracy is
significantly higher than that of the plain RNN. Let's check the performance on
the test data in terms of the accuracy score.

6. Make predictions on the test set and print the accuracy score:

y_test_pred = model_lstm.predict_classes(X_test)

print(accuracy_score(y_test, y_test_pred))

The accuracy is printed out as follows:

0.87032

The accuracy we got (87%) is a significant improvement from the accuracy we
got using plain RNNs (85.1%). It looks like the extra parameters and the extra
predictive power from the cell state came in handy for our task.

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZPO2g.

You can also run this example online at https://packt.live/2Oa2trm.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/31ZPO2g
https://packt.live/2Oa2trm

LSTM versus Plain RNNs | 291

In this exercise, we saw how we can employ LSTMs for sentiment classification of
text. The training time was significantly higher, and the number of parameters is
higher too. But in the end, even this simple architecture (without any hyperparameter
tuning) gave better results than the plain RNN. You are encouraged to tune the
hyperparameters further to get the most out of the powerful LSTM architecture.

LSTM versus Plain RNNs
We saw that LSTMs are built on top of plain RNNs, with the primary goal of
addressing the vanishing gradient problem to enable modeling long-range
dependencies. Looking at the following figure tells us that a plain RNN passes only
the hidden state (the short-term memory), whereas an LSTM passes the hidden state
as well as the explicit cell state (the long-term memory), giving it more power. So,
when the term "good" is being processed in the LSTM, the recurrent layer also passes
the cell states holding the long-term memory:

Figure 6.13: Plain RNNs (left) and LSTMs (right)

In practice, does this mean that you always need an LSTM? The answer to this
question, as with most questions in data science and especially deep learning, is, "it
depends". To understand these considerations, we need to understand the benefits
and drawbacks of LSTMs compared to plain RNNs.

292 | LSTMs, GRUs, and Advanced RNNs

Benefits of LSTMs:

• More powerful, as it uses more parameters and an explicit cell state

• Models long-range dependencies better

Drawbacks of LSTMs:

• Many more parameters

• Takes more time to train

• More prone to overfitting

If you have long sequences to work with, LSTM would be a good choice. If you
have a small dataset and the sequences you are dealing with are short (<10), then
you're probably okay to use a plain RNN, owing to there being a lower number of
parameters (although you could also try LSTMs, making sure to use regularization
to avoid overfitting). A larger dataset with long sequences would probably extract
the most out of powerful models such as LSTMs. Note that training LSTMs is
computationally expensive and time-consuming, so if you have an extremely large
dataset, training LSTMs may not be the most practical approach. Of course, all these
statements should serve merely as guidance – the best approach would be what
works best for your data and your task.

Gated Recurrence Units
In the previous section, we saw that LSTMs have a lot of parameters and seem much
more complex than the regular RNN. You may be wondering, are all these apparent
complications really necessary? Can the LSTM be simplified a little without it losing
significant predictive power? Researchers wondered the same for a while, and in
2014, Kyunghyun Cho and their team proposed the GRU as an alternative to LSTMs in
their paper (https://arxiv.org/abs/1406.1078) on machine translation.

GRUs are simplified forms of LSTMs and aim at reducing the number of parameters
while retaining the power of the LSTM. In tasks around speech modeling and
language modeling, GRUs provide the same performance as LSTMs, but with fewer
parameters and faster training times.

https://arxiv.org/abs/1406.1078

Gated Recurrence Units | 293

One major simplification done in a GRU is the omission of the explicit cell state.
This sounds counterintuitive considering that the freely flowing cell state was what
gave the LSTM its power, right? What really gave LSTMs all that power was the freely
flowing nature of the cell state and not the cell state itself? Indeed, if the cell state
were also subject to activations, LSTMs probably wouldn't have had the success
they did:

Figure 6.14: Gated Recurrent Unit

So, the freely flowing values is the key differentiating idea. GRUs retain this idea,
by allowing the hidden state to flow freely. Let's look at the preceding figure to
understand what this means. GRUs allow the hidden state to pass through freely.
Another way to look at this is that GRUs effectively bring the idea of the cell state (as
in LSTMs) to the hidden state.

We still need to regulate the flow of the hidden state, though, so we still have
gates. GRUs combine the forget gate and update gate into a single update gate. To
understand the motivation behind this, consider this – if we forget a cell state, and
don't update it, what are we really doing? Maybe there is merit in having a single
update operation. This is the second major difference in the architecture.

As a result of these two changes, GRUs have the data pass through three activations
instead of four, as in LSTMs, reducing the number of parameters. While GRUs still
have three times the number of parameters of a plain RNN, these have 75% of the
parameters of LSTMs, and that is a welcome change. We still have information
flowing freely through the network and this should allow us to model
long-range dependencies.

294 | LSTMs, GRUs, and Advanced RNNs

Let's see how a GRU-based model performs on our task of sentiment classification.

Exercise 6.03: GRU-Based Sentiment Classification Model

In this exercise, we will build a simple GRU-based model to predict sentiments in
our data. We will continue with the same setup that we used previously (that is, the
number of cells, embedding dimensions, dropout, and so on). Using GRUs instead
of LSTMs in the model is as simple as replacing "LSTM" with "GRU" when adding the
layer. Follow these steps to complete this exercise:

1. Import the GRU layer from Keras layers:

from tensorflow.keras.layers import GRU

2. Instantiate the sequential model, add the embedding layer with the appropriate
dimensions, and add 40% spatial dropout:

model_gru = Sequential()

model_gru.add(Embedding(vocab_size, output_dim=32))

model_gru.add(SpatialDropout1D(0.4))

3. Add a GRU layer with 32 cells. Set the reset_after parameter to False (this
is a minor TensorFlow 2 implementation detail in order to maintain consistency
with the implementation of plain RNNs and LSTMs):

model_gru.add(GRU(32, reset_after=False))

4. Add the dropout (40%) and dense layers, compile the model, and print the
model summary:

model_gru.add(Dropout(0.4))

model_gru.add(Dense(1, activation='sigmoid'))

model_gru.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', metrics=['accuracy'])

model_gru.summary()

Gated Recurrence Units | 295

The model summary is as follows:

Figure 6.15: Summary of the GRU model

From the summary of the GRU model, we can see that the number of
parameters in the GRU layer is 6240. You can check that this is exactly three
times the number of parameters in the plain RNN layer we saw in Exercise 6.01,
Building and Training an RNN Model for Sentiment Classification, and 0.75 times
the parameters of the LSTM layer we saw in Exercise 6.02, LSTM-Based Sentiment
Classification Model – again, this is in line with our expectations. Next, let's fit the
model on the training data.

5. Fit on the training data for four epochs (which gives us the best result):

history_gru = model_gru.fit(X_train, y_train, \

 batch_size=128, \

 validation_split=0.2, \

 epochs = 4)

296 | LSTMs, GRUs, and Advanced RNNs

The output from the training process is as follows:

Figure 6.16: GRU training output

Notice that training the GRUs also took much longer than plain RNNs but was
faster than LSTMs. The validation accuracy is better than the plain RNN and
seems close to that of the LSTM. Let's see how the model fares on the test data.

6. Make predictions on the test set and print the accuracy score:

y_test_pred = model_gru.predict_classes(X_test)

accuracy_score(y_test, y_test_pred)

The accuracy is printed out as follows:

0.87156

We can see that the accuracy of the GRU model (87.15%) is very similar to that
of the LSTM (87%) and is higher than the plain RNN. This is an important point
– GRUs are simplifications of LSTMs that aim to provide similar accuracy with
fewer parameters. Our exercise here shows this is true.

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZPO2g.

You can also run this example online at https://packt.live/2Oa2trm.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/31ZPO2g
https://packt.live/2Oa2trm

Bidirectional RNNs | 297

In this exercise, we saw how we can employ GRUs for the sentiment classification
of text. The training time was slightly lower than the LSTM model and the number
of parameters is lower. Even this simple architecture (without any hyperparameter
tuning) gave better results than the plain RNN model and gave results similar to the
LSTM model.

LSTM versus GRU

So, which one should you choose? The LSTM has more parameters and an explicit cell
state designed to store long-term memory. The GRU has fewer parameters, which
means faster training, and also has a free-flowing cell state to allow it to model long-
range dependencies.

An empirical evaluation (available at https://arxiv.org/abs/1412.3555) by Junyoung
Chung, Yoshua Bengio, and their team in 2014 on music-modeling and speech-
modeling tasks showed that both LSTMs and GRUs are markedly superior to plain
RNNs. They also found that GRUs are on par with LSTMs in terms of performance.
They remarked that tuning hyperparameters such as layer size is probably more
important than choosing between LSTM and GRU.

In 2018, Gail Weiss, Yoav Goldberg, and their team demonstrated and concluded that
LSTMs outperform GRUs in tasks that require unbounded counting, that is, those that
need to handle sequences of an arbitrary length. The Google Brain team, in 2018,
also showed that the performance of LSTMs is superior to GRUs when it comes to
machine translation. This leads us to think that the extra power that LSTMs bring may
be very useful in certain applications.

Bidirectional RNNs
The RNN models we've just looked at – LSTMs, GRUs – are powerful indeed and
provide extremely good results when it comes to sequence-processing tasks. Now,
let's discuss how to make them even more powerful, and the methods that yield the
amazing successes in deep learning that you have been hearing about.

https://arxiv.org/abs/1412.3555

298 | LSTMs, GRUs, and Advanced RNNs

Let's begin with the idea of bidirectional RNNs. The idea applies to all variants of
RNNs, including, but not limited to, LSTMs and GRUs. Bidirectional RNNs process
the sequence in both directions, allowing the network to have both backward and
forward information about the sequence, providing it with a much richer context:

Figure 6.17: Bidirectional LSTM

The bidirectional model essentially employs two RNNs in parallel – one as the
"forward layer" and the other as the "backward layer". As shown in the preceding
figure, the forward layer processes the sequence in the order of its elements. For the
sentence, "Life is good", the forward layer will process the term "Life" first, followed by
"is", followed by "good" – no different from the usual RNN layer. The backward layer
reverses this order – it processes "good" first, followed by "is", followed by "Life". At
each step, the states of the forward and the backward layers are concatenated to
form the output.

Bidirectional RNNs | 299

What kind of tasks benefit the most from this architecture? Looking at both sides of
the context helps resolve any ambiguity about the term at hand. When we read a
statement such as "The stars", we're not sure as to what "stars" we're reading about –
is it the stars in the sky or movie stars? But when we also see the terms coming later
in the sequence and read "The stars at the movie premiere", we're confident that this
sentence is about movie stars. The tasks that can benefit the most from such a setup
are machine translation, parts-of-speech tagging, named entity recognition, and word
prediction tasks, to list a few. Bidirectional RNNs show performance gains for general
text classification tasks as well. Let's apply a bidirectional LSTM-based model to our
sentiment classification task.

Exercise 6.04: Bidirectional LSTM-Based Sentiment Classification Model

In this exercise, we will use bidirectional LSTMs to predict sentiment on our data. We'll
be using the bidirectional wrapper from Keras to create bidirectional layers on LSTMs
(you could create a bidirectional GRU model by simply replacing LSTM with GRU in the
wrapper). Follow these steps to complete this exercise:

1. Import the Bidirectional layer from Keras layers. This layer is essentially
a wrapper you can use around other RNNs:

from tensorflow.keras.layers import Bidirectional

2. Instantiate the sequential model, add the embedding layer with the appropriate
dimensions, and add a 40% spatial dropout:

model_bilstm = Sequential()

model_bilstm.add(Embedding(vocab_size, output_dim=32))

model_bilstm.add(SpatialDropout1D(0.4))

3. Add a Bidirectional wrapper to an LSTM layer with 32 cells:

model_bilstm.add(Bidirectional(LSTM(32)))

4. Add the dropout (40%) and dense layers, compile the model, and print the
model summary:

model_bilstm.add(Dropout(0.4))

model_bilstm.add(Dense(1, activation='sigmoid'))

model_bilstm.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', metrics=['accuracy'])

model_bilstm.summary()

300 | LSTMs, GRUs, and Advanced RNNs

The summary is as follows:

Figure 6.18: Summary of the bidirectional LSTM model

Note the parameters of the model shown in the preceding screenshot. Not
surprisingly, the bidirectional LSTM layer has 16640 parameters – twice the
number of parameters that the LSTM layer (8320 parameters) had in Exercise
6.02, LSTM-Based Sentiment Classification Model. This is eight times the parameters
of the plain RNN. Next, let's fit the model on the training data.

5. Fit the training data for four epochs with a batch size of 128:

history_bilstm = model_bilstm.fit(X_train, y_train, \

 batch_size=128, \

 validation_split=0.2, \

 epochs = 4)

The output from training is as follows:

Figure 6.19: Bidirectional LSTM training output

Stacked RNNs | 301

Notice that, as we expect, training bidirectional LSTMs takes much longer
than regular LSTMs, and several times longer than plain RNNs. The validation
accuracy seems to be closer to the LSTM's accuracy.

6. Make predictions on the test set and print the accuracy score:

y_test_pred = model_bilstm.predict_classes(X_test)

accuracy_score(y_test, y_test_pred)

The accuracy is as follows:

0.877

The accuracy we received here (87.7%) is a slight improvement over the LSTM model's
accuracy, which was 87%. Again, you can tune the hyperparameters even further
to extract the most out of this powerful architecture. Note that we had twice the
number of parameters compared to the LSTM model, and eight times the parameters
of the plain RNN. Working with a large dataset may make the performance
differences bigger.

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZPO2g.

You can also run this example online at https://packt.live/2Oa2trm.
You must execute the entire Notebook in order to get the desired result.

Stacked RNNs
Now, let's look at another approach we can follow to extract more power from RNNs.
In all the models we've looked at in this chapter, we've used a single layer for the
RNN layer (plain RNN, LSTM, or GRU). Going deeper, that is, adding more layers, has
typically helped us for feedforward networks so that we can learn more complex
patterns/features in the deeper layers. There is merit in trying this idea for recurrent
networks. Indeed, stacked RNNs do seem to give us more predictive power.

https://packt.live/31ZPO2g
https://packt.live/2Oa2trm

302 | LSTMs, GRUs, and Advanced RNNs

The following figure illustrates a simple two-layer stacked LSTM model. Stacking RNNs
simply means feeding the output of one RNN layer to another RNN layer. The RNN
layers can output sequences (that is, output at each time step) and these can be fed,
like any input sequence, into the subsequent RNN layer. In terms of implementation
through code, stacking RNNs is as simple as returning sequences from one layer, and
providing this as input to the next RNN layer, that is, the immediate next layer:

Figure 6.20: Two-layer stacked RNN

Let's see the stacked RNN (LSTM) in action by using it on our sentiment
classification task.

Exercise 6.05: Stacked LSTM-Based Sentiment Classification Model

In this exercise, we will "go deeper" into the RNN architecture by stacking two LSTM
layers to predict sentiment in our data. We will continue with the same setup that we
used in the previous exercises (the number of cells, embedding dimensions, dropout,
and so on) for the other layers. Follow these steps to complete this exercise:

1. Instantiate the sequential model, add the embedding layer with the appropriate
dimensions, and add 40% spatial dropout:

model_stack = Sequential()

model_stack.add(Embedding(vocab_size, output_dim=32))

model_stack.add(SpatialDropout1D(0.4))

Stacked RNNs | 303

2. Add an LSTM layer with 32 cells. Make sure to specify return_sequences
as True in the LSTM layer. This will return the output of the LSTM at each time
step, which can then be passed to the next LSTM layer:

model_stack.add(LSTM(32, return_sequences=True))

3. Add another LSTM layer with 32 cells. This time, you don't need to return
sequences. You can either specify the return_sequences option as False or
skip it altogether (the default value is False):

model_stack.add(LSTM(32, return_sequences=False))

4. Add the dropout (50% dropout; this is higher since we're building a more
complex model) and dense layers, compile the model, and print the
model summary:

model_stack.add(Dropout(0.5))

model_stack.add(Dense(1, activation='sigmoid'))

model_stack.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', \

 metrics=['accuracy'])

model_stack.summary()

The summary is as follows:

Figure 6.21: Summary of the stacked LSTM model

304 | LSTMs, GRUs, and Advanced RNNs

Note that the stacked LSTM model has the same number of parameters as the
bidirectional model. Let's fit the model on the training data.

5. Fit the model on the training data for four epochs:

history_stack = model_stack.fit(X_train, y_train, \

 batch_size=128, \

 validation_split=0.2, \

 epochs = 4)

The output from training is as follows:

Figure 6.22: Stacked LSTM training output

Training stacked LSTMs took less time than training bidirectional LSTMs. The
validation accuracy seems to be close to that of the bidirectional LSTM model.

6. Make predictions on the test set and print the accuracy score:

y_test_pred = model_stack.predict_classes(X_test)

accuracy_score(y_test, y_test_pred)

The accuracy is printed out as follows:

0.87572

Summarizing All the Models | 305

The accuracy of 87.6% is an improvement over the LSTM model (87%) and is
practically the same as that of the bidirectional model (87.7%). This is a somewhat
significant improvement over the performance of the regular LSTM model,
considering that we're working with a rather small dataset. The larger your dataset
is, the more you can benefit from these sophisticated architectures. Try tuning the
hyperparameters in order to get the most out of this powerful architecture.

Note

To access the source code for this specific section, please refer
to https://packt.live/31ZPO2g.

You can also run this example online at https://packt.live/2Oa2trm.
You must execute the entire Notebook in order to get the desired result.

Summarizing All the Models
In this chapter, we've looked at different variants of RNNs – from plain RNNs to LSTMs
to GRUs. We also looked at the bidirectional approach and the stacking approach
to using RNNs. Now is a good time to take a holistic look at things and make a
comparison between the models. Let's look at the following table, which compares
the five models in terms of parameters, training time, and performance (that is, the
level of accuracy on our dataset):

Figure 6.23: Comparing the five models

https://packt.live/31ZPO2g
https://packt.live/2Oa2trm

306 | LSTMs, GRUs, and Advanced RNNs

Note

As mentioned earlier in the chapter, while working through the practical
elements, you may have obtained values different from the ones shown
above; however, the test accuracies you obtain should largely agree with
ours. If the model's performance is very different, you may want to tweak
the number of epochs.

Plain RNNs are the lowest on parameters and have the lowest training times but
have the lowest accuracy of all the models. This is in line with our expectations – we
are dealing with sequences that are 200 characters in length, and we know not to
expect much from plain RNNs, and that gated RNNs (LSTMs, GRUs) are more suitable.
Indeed, LSTMs and GRUs do perform significantly better than plain RNNs. But the
accuracy comes at the cost of significantly higher training times, and several times the
parameters, making these models more prone to overfitting.

The approaches of stacking and using bidirectional processing seem to provide an
incremental benefit in terms of predictive power, but this is at the cost of significantly
higher training times and several times the parameters. The stacked and bidirectional
approaches gave us the highest accuracy, even on this small dataset.

While the performance results are specific to our dataset, the gradation in
performance we see here is fairly common. The stacked and bidirectional models are
present in many of the solutions today that provide state-of-the-art results in various
tasks. With a larger dataset and when working with much longer sequences, we
would expect the differences in model performances to be larger.

Attention Models
Attention models were first introduced in late 2015 by Dzmitry Bahdanau, KyungHyun
Cho, and Yoshua Bengio in their influential and seminal paper (https://arxiv.org/
abs/1409.0473) that demonstrated the state-of-the-art results of English-to-French
translation. Since then, this idea has been used for many sequence-processing tasks
with great success, and attention models are becoming increasingly popular. While
a detailed explanation and mathematical treatment is beyond the scope of this
book, let's understand the intuition behind the idea that is considered by many big
names in the field of deep learning as a significant development in our approach to
sequence modeling.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473

Attention Models | 307

The intuition behind attention can be best understood using an example from the
task it was developed for – translation. When a novice human translates a long
sentence between languages, they don't translate the entire sentence in one go.
They break the original sentence down into smaller, manageable chunks, thereby
generating a translation for each chunk sequentially. For each chunk, there would be
a part that is the most important for the translation task, that is, where you need to
pay the most attention:

Figure 6.24: Idea of attention simplified

The preceding figure shows a simple example where we're translating the sentence,
"Azra is moving to Berlin", into French. The French translation is, "Azra
déménage à Berlin". To get the first term in the French translation, "Azra", we
need to pay attention primarily to the first term in the original sentence (underscored
by a light gray line) and maybe a bit to the second (underscored by a dark gray line)
– these terms get higher importance (weight). The remaining parts of the sentence
aren't relevant. Similarly, to generate the term "déménage" in the output, we need to
pay attention to the terms "is" and "moving". The importance of each term toward
the output term is expressed as weights. This is known as "alignment".

308 | LSTMs, GRUs, and Advanced RNNs

These alignments can be seen in the following figure, which was sourced from the
original paper (https://arxiv.org/abs/1409.0473). It beautifully demonstrates what the
model identified as most important for each term in the output. A lighter color in
a cell in the grid means a higher weight for the corresponding input term in the
column. We can see that for the output term "marin", the model correctly identifies
"marine" as the most important input term to pay attention to. Similarly, it has
identified "environment" as the most important term for "environnement",
"known" for "connu", and so on. Pretty neat, isn't it?

Figure 6.25: The alignment learned by the model

https://arxiv.org/abs/1409.0473

More Variants of RNNs | 309

While attention models were originally designed for translation tasks, the models
have been employed on a variety of other tasks with good success. That being said,
note that the attention models have a very high number of parameters. The models
are typically employed on bidirectional LSTM layers and add additional weights for
the importance values. A high number of parameters makes the model more prone
to overfitting, which means they will need much larger datasets to utilize their power.

More Variants of RNNs
We've seen quite a few variations of RNNs in this chapter – covering all the prominent
ones and the major upcoming (in terms of popularity) variations. Sequence modeling
and its associated architectures are a hot area of research, and we see plenty of
developments coming in every year. Many variants aim to make lighter models with
fewer parameters that aren't as hardware hungry as current RNNs. Clockwork
RNNs (CWRNNs) are a recent development and show great success. There are also
Hierarchal Attention Networks, built on the idea of attention, but ultimately also
propose that you shouldn't use RNNs as building blocks. There's a lot going on in this
exciting area, so keep your eyes and ears open for the next big idea.

Activity 6.01: Sentiment Analysis of Amazon Product Reviews

So far, we've looked at the variants of RNNs and used them to predict sentiment
on movie reviews from the IMDb dataset. In this activity, we will build a sentiment
classification model on Amazon product reviews. The data contains reviews for
several categories of products. The original dataset, available at https://snap.stanford.
edu/data/web-Amazon.html, is huge; therefore, we have sampled 50,000 reviews for
this activity.

Note

The sampled dataset, which has been split into train and test sets, can be
found at https://packt.live/3iNTUjN.

This activity will bring together the concepts and methods we discussed in this
chapter and those discussed in Chapter 4, Deep Learning for Text – Embeddings, and
Chapter 5, Deep Learning for Sequences. You will begin by performing a detailed text
cleanup and conduct preprocessing to get it ready for the deep learning model. You
will also use embeddings to represent text. For the prediction part, you will employ
stacked LSTMs (two layers) and two dense layers.

https://snap.stanford.edu/data/web-Amazon.html
https://snap.stanford.edu/data/web-Amazon.html
https://packt.live/3iNTUjN

310 | LSTMs, GRUs, and Advanced RNNs

For convenience (and awareness), you will also utilize the Tokenizer API from
TensorFlow (Keras) to convert the cleaned-up text into the corresponding sequences.
The Tokenizer combines the function of the tokenizer from NLTK with the
vectorizer (CountVectorizer/ TfIdfVectorizer) by tokenizing the text
first and then learning a vocabulary from a dataset. Let's see it in action by creating
some toy data using the following command:

sents = ["life is good", "good life", "good"]

The Tokenizer can be imported, instantiated, and fit on the toy data using the
following commands:

tok = Tokenizer()

tok.fit_on_texts(sents)

Once the vocabulary has been trained on the toy data (index learned for each term),
we can convert the input text into a corresponding sequence of indices for the terms.
Let's convert the toy data into the corresponding sequences of indices using the
texts_to_sequences method of the tokenizer:

tok.texts_to_sequences(sents)

We'll get the following output:

[[2, 3, 1], [1, 2], [1]]

Now, the data format is the same as that of the IMDb dataset we've used throughout
this chapter, and it can be processed in a similar fashion.

With this, you are now ready to get started. The following are the high-level steps you
will need to follow to complete this activity:

1. Read in the data files for the train and test sets (Amazon_reviews_train.
csv and Amazon_reviews_test.csv). Examine the shapes of the datasets
and print out the top five records from the train data.

2. For convenience when it comes to processing, separate the raw text and the
labels for the train and test set. Print the first two reviews from the train text.
You should have the following four variables: train_raw comprising the raw
text for the train data, train_labels with labels for the train data, test_raw
containing raw text for the test data, and test_labels with labels for the
test data.

More Variants of RNNs | 311

3. Normalize the case and tokenize the test and train texts using NLTK's
word_tokenize (after importing it, of course – hint: use list comprehension
for cleaner code). Print the first review from the train data to check if the
tokenization worked. Download punkt from NLTK if you haven't used the
tokenizer before.

4. Import stopwords (built in to NLTK) and punctuation from the string module.
Define a function (drop_stop) to remove these tokens from any input
tokenized sentence. Download stopwords from NLTK if you haven't used
it before.

5. Using the defined function (drop_stop), remove the redundant stop words
from the train and the test texts. Print the first review of the processed train
texts to check if the function worked.

6. Using Porter Stemmer from NLTK, stem the tokens for the train and
test data.

7. Create the strings for each of the train and text reviews. This will help us work
with the utilities in Keras to create and pad the sequences. Create the train_
texts and test_texts variables. Print the first review from the processed
train data to confirm it.

8. From the Keras preprocessing utilities for text (keras.preprocessing.
text), import the Tokenizer module. Define a vocabulary size of 10000 and
instantiate the tokenizer with this vocabulary.

9. Fit the tokenizer on the train texts. This works just like CountVectorizer did
in Chapter 4, Deep Learning for Text – Embeddings, and trains the vocabulary. After
fitting, use the texts_to_sequences method of the tokenizer on the train
and test sets to create the sequences for them. Print the sequence for the first
review in the train data.

10. We need to find the optimal length of the sequences to process in the model.
Get the length of the reviews from the train set into a list and plot the histogram
of the lengths.

11. The data is now in the same format as the IMDb data we used in the chapter.
Using a sequence length of 100 (define the maxlen = 100 variable), use the
pad_sequences method from the sequence module in Keras' preprocessing
utilities (keras.preprocessing.sequence) to limit the sequences to 100
for both the train and test data. Check the shape of the result for the train data.

312 | LSTMs, GRUs, and Advanced RNNs

12. To build the model, import all the necessary layers from Keras (embedding,
spatialdropout, LSTM, dropout, and dense) and import the Sequential
model. Initialize the Sequential model.

13. Add an embedding layer with 32 as the vector size (output_dim). Add a spatial
dropout of 40%.

14. Build a stacked LSTM model with 2 layers with 64 cells each. Add a dropout layer
with 40% dropout.

15. Add a dense layer with 32 neurons with relu activation, then a 50% dropout
layer, followed by another dense layer of 32 neurons with relu activation, and
follow this up with another dropout layer with 50% dropout.

16. Add a final dense layer with a single neuron with sigmoid activation and
compile the model. Print the model summary.

17. Fit the model on the training data with a 20% validation split and a batch size of
128. Train for 5 epochs.

18. Make a prediction on the test set using the predict_classes method of the
model. Using the accuracy_score method from scikit-learn, calculate
the accuracy on the test set. Also, print out the confusion matrix.

With the preceding parameters, you should get about 86% accuracy. With some
hyperparameter tuning, you should be able to get a significantly higher accuracy.

Note

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 416.

Summary
In this chapter, we started by understanding the reasons for plain RNNs not being
practical for very large sequences – the main culprit being the vanishing gradient
problem, which makes modeling long-range dependencies impractical. We saw the
LSTM as an update that performs extremely well for long sequences, but it is rather
complicated and has a large number of parameters. GRU is an excellent alternative
that is a simplification over LSTM and works well on smaller datasets.

Summary | 313

Then, we started looking at ways to extract more power from these RNNs by
using bidirectional RNNs and stacked layers of RNNs. We also discussed attention
mechanisms, a significant new approach that provides state-of-the-art results in
translation but can also be employed on other sequence-processing tasks. All of
these are extremely powerful models that have changed the way several tasks are
performed and form the basis for models that produce state-of-the-art results. With
active research in the area, we expect things to only get better as more novel variants
and architectures are released.

Now that we've discussed a variety of powerful modeling approaches, in the next
chapter, we will be ready to discuss a very interesting topic in the deep learning
domain that enables AI to be creative – Generative Adversarial Networks.

Introduction

In this chapter, you will embark on another interesting topic within the deep
learning domain: Generative Adversarial Networks (GANs). You will
get introduced to GANs and their basic components, along with some of
their use cases. This chapter will give you hands-on experience of creating
a GAN to generate a data distribution produced by a sine function. You
will also be introduced to deep convolutional GANs and will perform an
exercise to generate an MNIST data distribution. By the end of this chapter,
you will have tested your understanding of GANs by generating the MNIST
fashion dataset.

Generative Adversarial

Networks

7

316 | Generative Adversarial Networks

Introduction
The power of creativity was always the exclusive domain of the human mind. This
was one of the facts touted as one of the major differences between the human mind
and the artificial intelligence domain. However, in the recent past, deep learning
has been making baby steps in the path to being creative. Imagine you were at the
Sistine Chapel in the Vatican and were looking up with bewilderment at the frescos
immortalized by Michelangelo, wishing your deep learning models were able to
recreate something like that. Well, maybe 10 years back, people would have scoffed
at your thought. Not anymore, though – deep learning models have made great
strides in regenerating immortal works. Applications like these are made possible by
a class of networks called Generative Adversarial Networks (GANs).

Many applications have been made possible with GANs. Take a look at the
following image:

Figure 7.1: Image translation using GANs

Introduction | 317

Note:

The preceding image is sourced from the research paper titled Image-to-
Image Translation with Conditional Adversarial Networks: Phillip Isola,
Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros, available at https://arxiv.org/
pdf/1611.07004.pdf.

The preceding image demonstrates how the input image, which has a very different
color scheme, has been transformed by the GAN into an image that looks very similar
to the real one. This application of GANs is called image translation.

In addition to these examples, many other use cases are finding traction. Some of the
notable ones are as follows:

• Synthetic data generation for data augmentation

• Generating cartoon characters

• Text to image translation

• Three-dimensional object generation

The list goes on. As the days go by, applications of GANs increasingly
become mainstream.

So, what exactly are GANs? What are the inner dynamics of GANs? How do you
generate images or other data distributions from totally unconnected distributions?
In this chapter, we'll find out the answers to those questions.

In the previous chapter, we learned about recurrent neural networks (RNNs),
a class of deep learning networks used for sequence data. In this chapter, we
will embark on a fascinating safari to the world of GANs. First, we will start with
an introduction to GANs. Then, we'll focus on generating a data distribution
that is similar to a known mathematical expression. We'll then move on to deep
convolutional GANs (DCGANs). To see how well our generative models work, we will
generate a data distribution similar to the MNIST handwritten digits. We'll start this
journey by learning about GANs.

Note

Depending on your system configuration, some of the exercises and
activities in this chapter may take quite a long time to execute.

https://arxiv.org/pdf/1611.07004.pdf
https://arxiv.org/pdf/1611.07004.pdf

318 | Generative Adversarial Networks

Key Components of Generative Adversarial Networks

GANs are used to create a data distribution from random noise data and make it look
similar to a real data distribution. GANs are a family of deep neural networks that
comprise two networks that are competing against each other. One of these networks
is called the generator network, while the other is called the discriminator
network. The functions of these two networks are to compete against each other
to generate a probability distribution that closely mimics an existing probability
distribution. To state an example of generating a new probability distribution, let's say
we have a collection of images of cats and dogs (real images). Using a GAN, we can
generate a different set of images (fake images) of cats and dogs from a very random
distribution of numbers. The success of a GAN is in generating the best set of cat and
dog images to the point that it is difficult for people to differentiate between the fake
ones and the real ones.

Another example where GANs can become useful is in data privacy. The data of
companies, especially in domains such as finance and healthcare, is extremely
sensitive. However, there might be instances where data has to be shared with third
parties for research purposes. In such scenarios, to maintain the confidentiality of
data, companies can use GANs to generate datasets that are similar in nature to their
existing datasets. There is a multitude of such business use cases where GANs can
come in really handy.

Let's understand GANs better by mapping out some of their components, as shown in
the following diagram:

Figure 7.2: Example of GAN structure

Introduction | 319

The preceding figure provides a concise overview of the components of a GAN and
how they come in handy in generating fake images from real ones. Let's understand
the process in the context of the preceding diagram:

1. The set of images at the top-left corner of the preceding figure represents a
probability distribution of real data (for example, MNIST, images of cats and
dogs, pictures of human faces, and more).

2. The generative network shown in the bottom-left part of the diagram generates
fake images (probability distributions) from a random noise distribution.

3. The trained discriminative network classifies whether the image that is fed in is
fake or real.

4. A feedback loop (the diamond-shaped box) working through the
backpropagation algorithm gives feedback to the generator network, thereby
refining the parameters of the generator model.

5. The parameters continue to be refined until the discriminator network can't
discriminate between the fake images and the real ones.

Now that we have an overview of each of the components, let's dive deeper and
understand them better through a problem statement.

Problem Statement – Generating a Distribution Similar to a Given

Mathematical Function

In this problem, we will use GANs to generate a distribution that is similar to a
data distribution from a mathematical function. The function we will be using to
generate the real data is a simple sine wave. We will train a GAN to generate a fake
distribution of data that will be similar to the data we generated from the known
mathematical function. We will progressively build each component that's required
while we traverse the solution for this problem statement.

320 | Generative Adversarial Networks

The process we will follow is explained in the following figure. We will follow a
pedagogical approach as per the steps detailed in this figure:

Figure 7.3: Four-step process to building a GAN from a known function

Now, let's explore each of these processes.

Process 1 – Generating Real Data from the Known Function

To begin our journey, we need a real distribution of data. This distribution of data
will comprise two features – the first one is the sequence and the second one is
the sine of the sequence. The first feature is a sequence of data points spaced at
equal intervals. To generate this sequence, we need to randomly generate a data
point from a normal distribution and then find other numbers spaced in sequence
at equal intervals. The second feature will be the sine() of the first feature. Both
these features will form our real data distribution. Before we get into an exercise that
generates the real dataset, let's look at some of the functions in the numpy library we
will use in this process.

Random Number Generation

First, we will generate a random number from a normal distribution using the
following function:

numpy.random.normal(loc,scale,size)

Introduction | 321

This function takes three arguments:

• loc: This is the mean of the data distribution.

• scale: This is the standard deviation of the data distribution.

• size: This defines the number of data points we want.

Arranging the Data into a Sequence

To arrange data in a sequence, we use the following function:

numpy.arange(start,end,spacing)

The arguments are the following:

• start: This is the point that the sequence should start from.

• end: The point where the sequence ends.

• spacing: The frequency between each successive number in the sequence. For
example, if we start off with 1 and generate a series with a spacing of 0.1, the
series will look as follows:

 1, 1.1,1.2 ……..

Generating the Sine Wave

To generate the sine of a number, we use the following command:

numpy.sine()

Let's use these concepts in the following exercise and learn how to generate a real
data distribution.

Exercise 7.01: Generating a Data Distribution from a Known Function

In this exercise, we will generate a data distribution from a simple sine function. By
completing this exercise, you will learn how to generate a random number from a
normal distribution and create a sequence of equally spaced data with the random
number as its center. This sequence will be the first feature. The second feature
will be created by calculating the sine() for the first feature. Follow these steps to
complete this exercise:

1. Open a new Jupyter Notebook and name it Exercise 7.01. Run the following
command to import the necessary library packages:

Importing the necessary library packages

import numpy as np

322 | Generative Adversarial Networks

2. Generate a random number from a normal distribution that has a mean of 3 and
a standard deviation of 1:

"""

Generating a random number from a normal distribution

with mean 3 and sd = 1

"""

np.random.seed(123)

loc = np.random.normal(3,1,1)

loc

Note

The triple-quotes (""") shown in the code snippet above are used to
denote the start and end points of a multi-line code comment. Comments
are added into code to help explain specific bits of logic.

For reproducing the results, we use random.seed(123).

You should get the following output:

array([1.9143694])

3. Using the previously generated random number as a midpoint, we will generate
equal sequences of numbers to the right and left of the midpoint. We will
generate a batch of 128 numbers. So, we take 64 numbers each to the right
and left of the midpoint with a spacing of 0.1. The following code generates a
sequence to the right of the midpoint:

Generate numbers to right of the mid point

xr = np.arange(loc,loc+(0.1*64),0.1)

4. Generate 64 numbers to the left of the midpoint:

Generate numbers to left of the random point

xl = np.arange(loc-(0.1*64),loc,0.1)

5. Concatenate both these sequences to generate the first feature:

Concatenating both these numbers

X1 = np.concatenate((xl,xr))

print(X1)

Introduction | 323

You should get an output similar to the one shown here:

Figure 7.4: Sequence of numbers with equal spacing

The preceding is the distribution of 128 numbers equally spaced from one
another. This sequence will be our first feature for the data distribution.

6. Generate the second feature, which is the sine() of the first feature:

Generate second feature

X2 = np.sin(X1)

7. Plot the distribution:

Plot the distribution

import matplotlib.pyplot as plot

plot.plot(X1, X2)

plot.xlabel('Data Distribution')

plot.ylabel('Sine of data distribution')

plot.show()

324 | Generative Adversarial Networks

You should get the following output:

Figure 7.5: Plot for the sine function

The preceding plot shows the distribution that you would be trying to mimic
using GANs.

8. Reshape each feature before concatenating them:

Reshaping the individual data sets

X1 = X1.reshape(128,1)

X2 = X2.reshape(128,1)

9. Concatenate both features to form a single DataFrame:

Concatenate both features to form the real data set

realData = np.concatenate((X1,X2),axis=1)

realData.shape

You should get the following output:

(128, 2)

Note

To access the source code for this specific section, please refer
to https://packt.live/3gHhv42.

You can also run this example online at https://packt.live/2O62M6r.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3gHhv42
https://packt.live/2O62M6r

Introduction | 325

In this exercise, we created a data distribution from a mathematical function. We
will be using this data distribution later to train the GAN to generate a distribution
similar to this. In a production environment, you will be provided with a real dataset,
similar to the MNIST or Imagenet datasets. In this case, our real dataset is a known
mathematical function. Later in this chapter, we will use some random noise data and
train the GAN to make that random noise data similar to this real data distribution.

Now that we have seen the real data distribution, the next section will be all about
creating a basic generative network.

Process 2 – Creating a Basic Generative Network

In the previous process, we worked on an example that will generate a distribution
from a known function. As we mentioned earlier, the purpose of the generative
network is to sample data from any arbitrary distribution and then transform that
data into generative samples that look similar to the known distribution.

The way the generative network achieves this is through the dynamics of the
generator, the discriminator, and the training process. The success of the generative
network relies on its ability to create data distributions that the discriminator can't
differentiate between – in other words, it can't determine whether the distribution
is fake or not. This ability of the generative network to create distributions that can
fool the discriminator is acquired by the training process. We will talk more about the
discriminator and the training process later in this chapter. For now, let's see how a
generator network can be constructed to generate fake data distributions from some
random distribution.

Building the Generative Network

Generative networks are neural networks that are trained to transform an arbitrary
distribution so that it looks similar to the known distribution. We can use any type
of neural network for this, such as multi-layer perceptrons (MLPs), convolutional
neural networks (CNNs), and more, to build the generator network. The input data
to these networks are the samples that we take from any arbitrary distribution. In
this example, we will be using an MLP to build a generative network. Before we start
building the network, let's revisit some of the building blocks of a neural network that
you will have learned about in the previous chapters. We will be building the network
using the Keras library.

326 | Generative Adversarial Networks

Sequential()

As you might already know, a neural network consists of different layers of nodes that
have connections between them. The Sequential() API is the mechanism through
which you can create those layers in Keras. The Sequential() API is instantiated
using the following code:

from tensorflow.keras import Sequential

Genmodel= Sequential()

In the first part of the code, the Sequential() class is imported from the
tensorflow.Keras module. It is then instantiated as a variable model in the
second line of code.

Kernel Initializers

In Chapter 2, Neural Networks, you learned that the training process involves updating
the weights and biases of a neural network so that the function that maps the
inputs to the outputs is learned effectively. As a first step in the training process, we
initialize some values for the weights and biases. These get updated more during the
backpropagation stage. The initialization of the weights and biases is done through
a parameter called the kernel initializer. Different types of kernel initializers are
used in a network in Keras. We will be using a kernel initializer called he_uniform
in the exercise that follows. A kernel initializer will be added as a parameter within
the network.

Dense Layers

The basic dynamics within each layer in a neural network is the matrix multiplication
(dot product) between the weights for the layer and the input to the layer, and the
further addition of a bias. This is represented by the dot(X,W) + B equation,
where X is the input to the layer, W is the weight or the kernel, and B is the bias.
This operation of the neural network is done using the dense layer in Keras. This is
implemented in code as follows:

from tensorflow.keras.layers import Dense

Genmodel.add(Dense(hidden_layer,activation,\

 kernel_initializer,input_dim))

Genmodel.add(Dense(hidden_layer,activation,kernel_initializer))

Introduction | 327

Note

The above code block is solely meant to explain how the code is
implemented. It may not result in a desirable output when run in its current
form. For now, try to understand the syntax completely; we will be putting
this code into practice in Exercise 7.02, Building a Generative Network.

As you can see, we add a dense layer to the instantiation of the Sequential() class
(Genmodel) we created earlier. Some of the key parameters that need to be given to
define a dense layer are as follows:

• Hidden Layers (hidden_layer): As you might know, hidden layers are the
intermediate layers in a neural network. The number of nodes of a hidden layer
is defined as the first parameter.

• Activation functions (activation): The other parameter is the type of
activation function that will be used. Activation functions will be discussed in
detail in the next section.

• Kernel Initializer (kernel_initializer): The kind of kernel initializer that
is used for the layer is defined within the dense layer.

• Input dimensions (input_dim): For the first layer of the network, we have to
define the dimensions of the input (input_dim). For the subsequent layers, this
is deduced automatically based on the output dimensions of each layer.

Activation Functions

As you might know, activation functions introduce non-linearity to the outputs of a
neuron. In a neural network, activation functions are introduced just after the dense
layer. The output of the dense layer is the input of the activation function. Different
activation functions will be used within the following exercise. They are as follows:

• ReLU: This stands for Rectified Linear Unit. This activation function only
outputs positive values. All negative values will be output as zero. This is one of
the most widely used activation functions.

• ELU: This stands for Exponential Linear Unit. This is very similar to ReLU except
for the fact that it outputs negative values as well.

• Linear: This is a straight-line activation function. In this function, the activations
are proportional to the inputs.

328 | Generative Adversarial Networks

• SELU: This stands for Scaled Exponential Linear Unit. This activation function
is a relatively lesser-used one. It enables an idea called internal normalization,
which ensures that the mean and variance from the previous layers
are maintained.

• Sigmoid: This is a very standard activation function. A sigmoid function squashes
any input into a value between 0 and 1. Therefore, the output from a sigmoid
function can also be treated as a probability distribution as the values are
between 0 and 1.

Now that we have seen some of the basic building blocks of the network, let's go
ahead and build our generative network in the next exercise.

Before we start the exercise, let's see where the next exercise lies in the overall
scheme of things. In Exercise 7.01, Generating a Data Distribution from a Known
Function, we created a data distribution from a known mathematical function,
which is a sine() function. We created the entire distribution by arranging the
first feature with equal intervals and then creating the second feature by taking the
sine() function of the first feature. So, we literally controlled the entire process
of creating this dataset. That's why this is called a real data distribution because the
data is created from a known function. The ultimate aim of a GAN is to transform
a random noise distribution and make it look like a real data distribution; that is,
make a random distribution look like the structured sine() distribution. This will
be achieved in later exercises. However, as a first step, we will create a generative
network that will create a random noise distribution. This is what we will do in the
next exercise.

Exercise 7.02: Building a Generative Network

In this exercise, we will build a generative network. The purpose of the generative
network is to generate fake data distribution from a random noise data. We'll do this
by generating random data points as input to the generator network. Then, we'll build
a six-layer network, layer by layer. Finally, we'll predict the output from the network
and plot the output distribution. This data distribution will be our fake distribution.
Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and name it Exercise 7.02. Import the
following library packages:

Importing the library packages

import tensorflow as tf

import numpy as np

Introduction | 329

from numpy.random import randn

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from matplotlib import pyplot

2. In this step, we define the number of input features and output features for
the network:

Define the input features and output features

infeats = 10

outfeats = 2

We will have 10 features as input and the output will be two features. The input
features of 10 are arbitrarily selected. The output features of 2 are selected
because our real dataset contains two features.

3. Now, we will generate a batch of random numbers. Our batch size will be 128:

Generate a batch of random numbers

batch = 128

genInput = randn(infeats * batch)

We can select any batch size. A batch size of 128 is selected so that we take
cognizance of the computation resources we have. Since the input size is 10,
we should generate 128 × 10 random numbers. Also, in the preceding code,
randn() is the function to generate random numbers. Inside the function, we
specify how many data points we want, which is (128 × 10) in our case.

4. Let's reshape the random data into the input format we want using the
following code:

Reshape the data

genInput = genInput.reshape(batch,infeats)

print(genInput.shape)

You should get the following output:

(128, 10)

5. In this step, we will define the generator. This network will have six layers:

Defining the Generator model

Genmodel = Sequential()

Genmodel.add(Dense(32,activation = 'linear',\

 kernel_initializer='he_uniform',\

330 | Generative Adversarial Networks

 input_dim=infeats))

Genmodel.add(Dense(32,activation = 'relu',\

 kernel_initializer='he_uniform'))

Genmodel.add(Dense(64,activation = 'elu',\

 kernel_initializer='he_uniform'))

Genmodel.add(Dense(32,activation = 'elu',\

 kernel_initializer='he_uniform'))

Genmodel.add(Dense(32,activation = 'selu',\

 kernel_initializer='he_uniform'))

Genmodel.add(Dense(outfeats,activation = 'selu'))

From the network, we can see that, in the first layer, we define the dimension
of the input, which is 10, and in the last layer, we define the output dimension,
which is 2. This is based on the input data dimensions that we generated in Step
4 (10) and the output features that we want, which is similar to the number of
features of the real data distribution.

6. We can see the summary of this network by using the model.summary()
function call:

Defining the summary of the network

Genmodel.summary()

You should get the following output:

Figure 7.6: Summary of the generator network

Introduction | 331

From the summary, you can see the shapes of the output from each layer. For
example, the output from the dense layer has a shape of (size of batch, 32) since
the first hidden layer has 32 neurons. None in the shape layer denotes the
number of examples, which in this case means the input batch size. The figure
of 352 for the first layer is the size of the parameters, which includes both the
weights and bias. The weight matrix will have a size of (10 × 32) as the number of
inputs to the first layer is 10 and the next layer (hidden layer 1) has 32 neurons.
The number of bias will be (32 × 1), which will be equivalent to the number of
hidden layer neurons in the first layer. So, in total, there are 320 + 32 = 352
parameters. The second layer would be (32 × 32) + (32 × 1) = 1,056 and so on for
all subsequent layers.

7. Now that we have defined the generator network, let's generate the output from
the network. We can do that using the predict() function:

Generating fake samples from network

fakeSamps = Genmodel.predict(genInput)

fakeSamps.shape

You should get the following output:

(128, 2)

We can see that the output from the generator function generates a sample with
two features and several examples equal to the batch size we have given.

8. Plot the distribution:

Plotting the fake distribution

from matplotlib import pyplot

pyplot.scatter(fakeSamps[:,0],fakeSamps[:,1])

pyplot.xlabel('Feature 1 of the distribution')

pyplot.ylabel('Feature 2 of the distribution')

pyplot.show()

332 | Generative Adversarial Networks

You should get an output similar to the following. Please note that modeling will
be stochastic in nature and therefore you might not get the same output:

Figure 7.7: Plot of the fake data distribution

As we can see, very random data has been generated. As you will see in
upcoming exercises, this random data will be transformed so that it looks like
the real data distribution.

Note

To access the source code for this specific section, please refer
to https://packt.live/2W0FxyZ.

You can also run this example online at https://packt.live/2WhZpOn.
You must execute the entire Notebook in order to get the desired result.

In this exercise, we defined the generator network, which had six layers and then
generated the first fake samples from the generator network. You may be wondering
how we arrived at those six layers. What about the choice of the activation functions?
Well, the network architecture was arrived at after a lot of experimentation for
this problem statement. There are no real shortcuts in terms of finding the right
architecture. We have to arrive at the most optimal architecture after experimenting
with different parameters such as the number of layers, type of activations,
and more.

https://packt.live/2W0FxyZ
https://packt.live/2WhZpOn

Introduction | 333

Setting the Stage for the Discriminator Network

In the previous exercise, we defined the generator network. Now, it is time to set the
stage before we define the discriminator network. Looking at the output we got from
the generator network, we can see that the data points are randomly distributed.
Let's take a step back and assess where we are really headed. In our introduction to
generative networks, we stated that we want the output from the generative network
to be similar to the real distribution we are trying to mimic. In other words, we want
the output from the generative network to look similar to the output from the real
distribution, as shown in the following plot:

Figure 7.8: Real data distribution

We can see that the current distribution that has been generated by the generator
network is nowhere near the distribution we want to mimic. Why do you think this is
happening? Well, the reason is quite obvious; we have not done any training yet. You
will also have noticed that we don't have an optimizer function as part of the network.
The optimizer function in Keras is defined using the compile() function, as shown
in the following code, where we define the type of loss function and what kind of
optimizers we want to adopt:

model.compile(loss='binary_crossentropy',\

 optimizer='adam',metrics=['accuracy'])

334 | Generative Adversarial Networks

We have excluded the compile() function on purpose. Later, when we are
introduced to the GAN model, we will use the compile() function to optimize the
generator network. So, hang on until then. For now, we will go ahead with the next
step of the process, which is defining the discriminator network.

Process 3 – Discriminator Network

In the previous process, we were introduced to the generative network, a neural
network that generated fake samples. The discriminator network is also another
neural network, albeit with different functionality from the generator network. The
purpose of the discriminator function is to identify whether a given example is a
real one or a fake one. Using an analogy, if the generator network is a conman who
makes fake currency, then the discriminator network is the super cop who identifies
that the currency is fake. Once caught by the super cop, the conman will try to
perfect their craft to make better counterfeits so that they can fool the super cop.
However, the super cop will also undergo lots of training to know the nuances of
different currencies and work toward perfecting the craft of catching whatever the
conman generates. We can see here that both these protagonists are in adversarial
positions all the time. This is the reason why the network is called a generative
adversarial network.

Taking a cue from the preceding analogy, training a discriminator is similar to the
super cop undergoing more training to identify fake currency. The discriminator
network is like any binary classifier you would have learned about in machine
learning. As part of the training process, the discriminator will be provided with two
classes of examples, one generated from the real distribution and the other from
the generator distribution. Each of these sets of examples will have their respective
labels too. The real distribution will have a label of "1", while the fake distribution will
have a label of "0". The discriminator, after being trained, will have to correctly classify
whether an example is real or fake, which is a typical binary classification problem.

Implementing the Discriminator Network

The core structure of the discriminator network would be similar to the generator
network we implemented in the previous section. The complete process behind
building the discriminator network is as follows:

1. Generate batches of real distribution.

2. Using the generator network, it generates batches of fake distribution.

Introduction | 335

3. Train the discriminator network with examples of both these distributions. The
real distribution will have a label of 1, while the fake distribution will have a
label of 0.

4. Evaluate the performance of the discriminator.

In Steps 1 and 2, we have to generate batches of both the real and fake distributions.
This will necessitate making use of the real distribution we built in Exercise 7.01,
Generating a Data Distribution from a Known Function, and the generator network we
developed in Exercise 7.02, Building a Generative Network. Since we have to use these
two distributions, it would be convenient to package them into two types of functions
to efficiently train the discriminator network. Let's look at the two types of functions
we will build.

Function to Generate Real Samples

The content of this function, which is used to generate real samples, is the same as
the code we developed in Exercise 7.01, Generating a Data Distribution from a Known
Function. The only notable addition is the label for the input data. As we stated earlier,
the real samples will have a label of 1. So, as labels, we will generate an array of 1s
with the same size as the batch size. There is a utility function in numpy that can be
used to generate a series of 1s called np.ones((batch,1). This will generate an
array of 1s whose size is equal to the batch size. Let's revisit the different steps in
this function:

1. Generate equally spaced numbers to the right and left of a random number.

2. Concatenate both sets to get a series that is equal in length to the batch size we
require. This is our first feature.

3. Generate the second feature by taking the sine() function of the first feature
we generated in Step 2.

4. Reshape both features so their size is equal to (batch,1) and then
concatenate them along the columns. This will result in an array of shape
(batch,2).

5. Generate the labels using the np.ones((batch,1)) function. The label array
will have a dimension of (batch,1).

336 | Generative Adversarial Networks

The arguments that we will provide to the function are the random number and the
batch size. One subtle change to note in Step 1 is that since we want a series equal
in length to the batch size, we will take equally spaced numbers to the left and right
equal to half of the batch size (batch size /2). In this way, when we combine both
series to the left and right, we get a series equal to the batch size we want.

Functions to Generate Fake Samples

The function(s) to generate fake samples will be the same as what we developed in
Exercise 7.02, Building a Generative Network. However, we will have to divide this into
three separate functions. The reason for dividing the code we implemented in Exercise
7.02, Building a Generative Network into three separate functions is for convenience
and efficiency during the training process. Let's take a look at these three functions:

• Function 1: The first of these functions is used to generate the inputs for
generating fake samples. This is the part of Exercise 7.02, Building a Generative
Network where we gave a batch size and the number of input features and
generated random normal numbers using the randn() function. The output
will be an array of size (batch,input features). The arguments to this
function are batch size and input feature size.

• Function 2: The second function is the complete six-layer generator network
we developed in Exercise 7.02, Building a Generative Network. The inputs to this
function are input feature size and output feature size.

• Function 3: The third function is a function that calls both the first and second
functions to generate fake samples. In addition to generating fake samples,
the function also generates the labels, which in the case of the generator
network should be 0. Just like in the discriminator network where we generated
a series of 1s, we have a utility function in numpy to generate 0s called
np.zeros((batch,1)).

Let's look at the complete process for these three functions:

1. Generate fake inputs using function 1.

2. Use the generator model function (function 2) to predict a fake output.

3. Generate labels, which is a series of 0s, using the np.zeros() function. This is
part of function 3.

Introduction | 337

The arguments to the third function are generator model, batch size, and
input feature size.

Building the Discriminator Network

The discriminator network will be built along the same lines as the generator
network; that is, it will be created using the Sequential() class, the dense layer,
and the activation and initialization functions. The only notable exception is that we
will also have the optimization layer in the form of the compile() function. In the
optimization layer, we will define the loss function, which in this case will be binary_
crossentropy as the discriminator network is a binary classification network. For
the optimizer, we will be using the adam optimizer as this is found to be very
efficient and is a very popular choice.

Training the Discriminator Network

Now that we have gone through all the components for implementing
the discriminator network, let's look at the steps involved in training the
discriminator network:

1. Generate a random number and then generate a batch of real samples and its
labels using the function to generate real samples.

2. Generate a batch of fake samples and its labels using the third function
described to generate fake samples. The third function will use both the other
functions to generate the fake samples.

3. Train the discriminator model using the train_on_batch() function with the
batch of real samples and fake samples.

4. Steps 1 to 3 are repeated for the number of epochs we want the training to run
for. This is done through a for loop over the number of epochs.

5. At every intermediate step, we calculate the accuracy of the model on the fake
samples and real samples using the evaluate() function. The accuracy of the
model is printed.

Now that we have seen the steps involved in implementing the discriminator network,
we'll implement this in the next exercise.

338 | Generative Adversarial Networks

Exercise 7.03: Implementing the Discriminator Network

In this exercise, we will build the discriminator network and train the network on both
the real samples and fake samples. Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and name it Exercise 7.03. Import the
following library packages:

Import the required library functions

import tensorflow as tf

import numpy as np

from numpy.random import randn

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from matplotlib import pyplot

2. Let's define a function that will generate the features of our real data
distribution. The return values of this function will be the real dataset and
its label:

Exercise7.03.ipynb

Function to generate real samples
def realData(loc,batch):
 """
 loc is the random location or mean around which samples are centred
 """
 """
 Generate numbers to right of the random point
 """
 xr = np.arange(loc,loc+(0.1*batch/2),0.1)
 xr = xr[0:int(batch/2)]
 """
 Generate numbers to left of the random point
 """
 xl = np.arange(loc-(0.1*batch/2),loc,0.1)

The complete code for this step can be found at https://packt.live/3fe02j3.

The function we are defining here comprises code that was used to generate
the sine() wave dataset in Exercise 7.01, Generating a Data Distribution from
a Known Function. The inputs to this function are the random number and the
batch size. Once the random number is provided, the series is generated with
the same process we followed in Exercise 7.01, Generating a Data Distribution
from a Known Function. We also generate the labels for the real data distribution,
which will be 1. The final return value will be the two features and the label.

https://packt.live/3fe02j3

Introduction | 339

3. Let's define a function called fakeInputs to generate inputs for the generator
function (this is function 1, which we explained in the Functions to Generate Fake
Samples section):

Function to generate inputs for generator function

def fakeInputs(batch,infeats):

 """

 Sample data points equal to (batch x input feature size)

 from a random distribution

 """

 genInput = randn(infeats * batch)

 # Reshape the input

 X = genInput.reshape(batch ,infeats)

 return X

In this function, we're generating random numbers in the format we want
([batch size , input features]). This function generates the fake
data that was sampled from the random distribution as the return value.

4. Next, we'll be defining a function that will return a generator model:

Function for the generator model

def genModel(infeats,outfeats):

 #Defining the Generator model

 Genmodel = Sequential()

 Genmodel.add(Dense(32,activation = 'linear',\

 kernel_initializer='he_uniform',\

 input_dim=infeats))

 Genmodel.add(Dense(32,activation = 'relu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(64,activation = 'elu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(32,activation = 'elu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(32,activation = 'selu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(outfeats,activation = 'selu'))

 return Genmodel

340 | Generative Adversarial Networks

This is the same model that we implemented in Exercise 7.02, Building
a Generative Network. The return value for this function will be the
generator model.

5. The following function will be used to create fake samples using the
generator model:

Function to create fake samples using the generator model

def fakedataGenerator(Genmodel,batch,infeats):

 # first generate the inputs to the model

 genInputs = fakeInputs(batch,infeats)

 """

 use these inputs inside the generator model

 to generate fake distribution

 """

 X_fake = Genmodel.predict(genInputs)

 # Generate the labels of fake data set

 y_fake = np.zeros((batch,1))

 return X_fake,y_fake

In the preceding code, we are implementing function 3, which we covered in the
Functions to Generate Fake Samples section. As you can see, we call the generator
model we defined in Step 4 as input, along with the batch size and the input
features. The return values for this function are the fake data that's generated,
along with its label (0).

6. Now, let's define the parameters to be used in the functions we have
just created:

"""

Define the arguments like batch size,input feature size

and output feature size

"""

batch = 128

infeats = 10

outfeats = 2

7. Let's build the discriminator model using the following code:

Define the discriminator model

Discmodel = Sequential()

Discmodel.add(Dense(16, activation='relu',\

 kernel_initializer = 'he_uniform',\

Introduction | 341

 input_dim=outfeats))

Discmodel.add(Dense(16,activation='relu' ,\

 kernel_initializer = 'he_uniform'))

Discmodel.add(Dense(16,activation='relu' ,\

 kernel_initializer = 'he_uniform'))

Discmodel.add(Dense(1,activation='sigmoid'))

Compiling the model

Discmodel.compile(loss='binary_crossentropy',\

 optimizer='adam', metrics=['accuracy'])

The mode of construction for the discriminator model is similar to what we did in
the generator network. Please note that the activation function for the last layer
will be a sigmoid as we need a probability regarding whether the output is a real
network or a fake network.

8. Print the summary of the discriminator network:

Print the summary of the discriminator model

Discmodel.summary()

You should get the following output:

Figure 7.9: Model summary

From the summary, we can see the size of the network based on the architecture
we defined. We can see that the first three dense layers have 16 neurons
each, which we defined in Step 7 when we built the discriminator network. The
final layer will only have one output as this is a sigmoid layer. This outputs the
probability of whether the data distribution is real (1) or fake (0).

342 | Generative Adversarial Networks

9. Invoke the generator model function to be used in the training process:

Calling the Generator model function

Genmodel = genModel(infeats,outfeats)

Genmodel.summary()

You should get the following output:

Figure 7.10: Model summary

You will notice that the architecture is the same as what we developed in Exercise
7.02, Building a Generative Network.

10. Now, we need to define the number of epochs to train the network for,
as follows:

Defining the number of epochs

nEpochs = 20000

11. Now, let's start training the discriminator network:

Exercise7.03.ipynb

Train the discriminator network
for i in range(nEpochs):
 # Generate the random number for generating real samples
 loc = np.random.normal(3,1,1)
 """
 Generate samples equal to the bath size
 from the real distribution
 """

Introduction | 343

 x_real, y_real = realData(loc,batch)
 #Generate fake samples using the fake data generator function
 x_fake, y_fake = fakedataGenerator(Genmodel,batch,infeats)

The complete code for this step can be found at https://packt.live/3fe02j3.

Here, we iterate the training of the model on both the real and fake data
for 20,000 epochs. The number of epochs is arrived at after some level of
experimentation. We should try this out with different values for the number
of epochs until we get some good accuracy figures. For every 4,000 epochs, we
print the accuracy of the model on both the real dataset and the fake dataset.
The printing frequency is arbitrary and is based on the number of plots you want
to see to check the progress of the training process. After training, you will see
that the discriminator achieves very good accuracy levels.

You should get an output similar to the following:

Real accuracy:0.265625,Fake accuracy:0.59375

Real accuracy:1.0,Fake accuracy:0.828125

Real accuracy:1.0,Fake accuracy:0.90625

Real accuracy:1.0,Fake accuracy:0.9453125

Real accuracy:1.0,Fake accuracy:0.9453125

Note

Since we are working with random values here, the output you get may vary
from the one you see here. It will also vary with every run.

From the accuracy levels, we can see that the discriminator was very good (accuracy
= 1) at identifying the real dataset initially and shows relatively poor accuracy levels
for the fake dataset. After around 4,000 epochs, we can see that the discriminator has
become good at identifying both the fake and real datasets as both the accuracies
are near 1.0.

Note

To access the source code for this specific section, please refer
to https://packt.live/3fe02j3.

You can also run this example online at https://packt.live/2ZYiYMG.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3fe02j3
https://packt.live/3fe02j3
https://packt.live/2ZYiYMG

344 | Generative Adversarial Networks

In this exercise, we defined different helper functions and also built the discriminator
function. Finally, we trained the discriminator model on real data and fake data.
At the end of the training process, we saw that the discriminator learned to
discriminate between the real dataset and fake dataset really well. Having trained
the discriminator network, it's now time to move on to the climax, which is building
the GAN.

Process 4 – Implementing the GAN

We have finally arrived at the moment we have been waiting for all this while. In
the previous three processes, we have been progressively building all the building
blocks for the GAN, such as the fake data generator, real data generator, generator
network, and discriminator network. The GAN is, in fact, the integration of all these
building blocks. The real game in the GAN is the process in which we integrate these
components with each other. Let's address this right away.

Integrating All the Building Blocks

When building the discriminator network, we generated real samples and fake
samples and fed them to the discriminator during training. The training process made
the discriminator "smart", which enabled it to correctly identify what is fake and what
is real. In probability terms, this would mean that when the discriminator gets a fake
sample, it will predict a probability close to "0" and when the sample is real, it will
predict a probability close to "1". However, getting the discriminator to be smart is
not our end objective. Our end objective is to get the generator model smart so that
it starts generating examples that look like real samples and, in the process, fools
the discriminator. This can be achieved by training the generator and updating its
parameters (that is, the weights and bias) to enable it to generate samples that look
like real samples. However, there is still a problem, because in the generator network,
we did not include an optimizer step and therefore the generator network by itself
cannot be trained. The way to get around this problem is by building another network
(let's call it Ganmodel) that connects the generator and discriminator in sequence
and then include an optimizer function in the new network so that it goes and
updates the parameters of its constituents when backpropagation happens. In terms
of pseudocode, this network will look something like this:

Ganmodel = Sequential()

First adding the generator model

Ganmodel.add(Genmodel)

"""

Introduction | 345

Next adding the discriminator model

without training the parameters

"""

Ganmodel.add(Discmodel)

Compile the model for loss to optimise the Generator model

Ganmodel.compile(loss='binary_crossentropy',optimizer = 'adam')

In this model, the generator model will generate fake samples that are fed into
the discriminator model, which in turn will then generate a probability as to
whether the example is fake or real. Based on the label of the example, it will have
a certain loss that will be propagated through the discriminator to the generator,
updating the parameters of both the models. In other words, based on the loss, the
backpropagation algorithm will update each parameter based on the gradient of
the parameter with respect to the loss. So, this will solve our problem of not having
defined an optimizer function for the generator.

However, there is one more catch to this network. Our discriminator network has
already been trained and was made really smart when we trained the discriminator
network separately. We don't want to train the discriminator model again in this
new network and make it smarter. This can be solved by defining that we don't want
to train the discriminator parameters in the network. With this new change, the
Ganmodel would look as follows:

First define that discriminator model cannot be trained

Discmodel.trainable = False

Ganmodel = Sequential()

First adding the generator model

Ganmodel.add(Genmodel)

"""

Next adding the discriminator model

without training the parameters

"""

Ganmodel.add(Discmodel)

Compile the model for loss to optimise the Generator model

Ganmodel.compile(loss='binary_crossentropy',optimizer = 'adam')

By making Discmodel.trainable = False, we're telling the network that
we don't want to update the parameters of the discriminator network during
backpropagation. So, the discriminator network will act as a conduit to pass on the
error during the backpropagation stage to the generator network.

346 | Generative Adversarial Networks

If you think all our problems have been solved, you are in for a rude awakening.
We know that when the discriminator model is presented with a fake distribution,
it will predict the probability to a value very close to 0. We also know that the labels
of the fake dataset are also 0. So, in terms of loss, there would be very minimal loss
being propagated back to the generator. With such a minuscule loss, the subsequent
update to the parameters of the generator model will also be very minuscule. This
will not enable the generator to generate samples that are like the real samples. The
generator will only be able to learn if a large loss is generated and propagated to it so
that its parameters are updated in the direction of real parameters. So, how do we
get the loss to be high? What if, instead of defining the labels of the fake samples as
0, we define them as 1? If we do this, the discriminator model, as usual, will predict a
probability close to 0 for fake examples. However, we now have a situation where the
loss function would be large because the labels are 1. When this large loss function
gets propagated back to the generator network, the parameters will be updated
significantly, which will enable it to be smarter. Subsequently, what will happen is the
generator will start generating samples that look more like the real samples, and they
would meet our objective.

This concept can be explained with the following figure. Here, we can see that at the
initial level of training, the probability for the fake data is close to zero (0.01) and the
label that we've given for the fake data is 1. This will ensure that we get a large loss
that gets backpropagated to the generator network:

Figure 7.11: GAN process

Now that we have seen the dynamics of the GAN model, let's tie all the pieces
together to define the process we will follow in order to build the GAN.

Introduction | 347

Process for Building the GAN

The complete process for the GAN is all about tying together the pieces we have
built into a logical order. We will use all the functions we built when we defined the
discriminator function. In addition, we will also make new functions; for instance, a
function for the discriminator network and another function for the GAN model. All
these functions will be called at specific points to make the GAN model. The end-to-
end process will be as follows:

1. Define the function to generate a real data distribution. This function is the same
function we developed in Exercise 7.03, Implementing the Discriminator Network for
the discriminator network.

2. Define the three functions that were created for generating fake samples. These
are a function for generating fake inputs, a function for the generator network,
and a function for generating fake samples and labels. All these functions are the
same as the ones we developed in Exercise 7.03, Implementing the Discriminator
Network for the discriminator network.

3. Create a new function for the discriminator network, just like we created in
Exercise 7.03, Implementing the Discriminator Network. This function will have the
output features (2) as its input as both the real dataset and fake dataset have
two features. This function will return the discriminator model.

4. Create a new function for the GAN model as per the pseudocode we developed
in the previous section (Process 4 – Building a GAN). This function will have the
generator model and the discriminator model as its inputs.

5. Start the training process.

The Training Process

The training process here is similar to the process we implemented in Exercise 7.03,
Implementing the Discriminator Network for the discriminator network. The steps for
the training process are as follows:

1. Generate a random number and then generate a batch of real samples and its
labels using the function to generate real samples.

2. Generate a batch of fake samples and its labels using the third function we
described regarding the functions for generating fake samples. The third
function will use both the other functions to generate the fake samples.

348 | Generative Adversarial Networks

3. Train the discriminator model using the train_on_batch() function using
the batch of real samples and fake samples.

4. Generate another batch of fake inputs to train the GAN model. These fake
samples are generated using function 1 in the fake sample generation process.

5. Generate the labels for the fake samples that are intended to fool the
discriminator. These labels will be 1s instead of 0s.

6. Train the GAN model using the train_on_batch() function using the fake
samples and its labels, as described in Steps 4 and 5.

7. Steps 1 to 6 are repeated for the number of epochs we want the training to run
for. This is done through a for loop over the number of epochs.

8. At every intermediate step, we calculate the accuracy of the model on the fake
samples and real samples using the evaluate() function. The accuracy of the
model is also printed.

9. We also generate output plots at certain epochs.

Now that we have seen the complete process behind training a GAN, let's dive into
Exercise 7.04, Implementing the GAN, which implements this process.

Exercise 7.04: Implementing the GAN

In this exercise, we will build and train the GAN by implementing the process we
discussed in the previous section. Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and name it Exercise 7.04. Import the
following library packages:

Import the required library functions

import tensorflow as tf

import numpy as np

from numpy.random import randn

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

from matplotlib import pyplot

2. Let's create a function to generate the real samples:

Exercise7.04.ipynb

Function to generate real samples
def realData(loc,batch):
 """
 loc is the random location or mean

Introduction | 349

 around which samples are centred
 """
 # Generate numbers to right of the random point
 xr = np.arange(loc,loc+(0.1*batch/2),0.1)
 xr = xr[0:int(batch/2)]
 # Generate numbers to left of the random point
 xl = np.arange(loc-(0.1*batch/2),loc,0.1)

The complete code for this step can be found on https://packt.live/3iIJHVS

The function we're creating here follows the same process we implemented in
Exercise 7.01, Generating a Data Distribution from a Known Function. The inputs
to this function are the random number and the batch size. We get the real
data distribution with both our features, along with the label for the real data
distribution as return values, from this function. The return values from this
function are the real dataset and its label.

3. Here, let's define the function to generate inputs for the generator network:

Function to generate inputs for generator function

def fakeInputs(batch,infeats):

"""

 Sample data points equal to (batch x input feature size)

 from a random distribution

 """

 genInput = randn(infeats * batch)

 # Reshape the input

 X = genInput.reshape(batch ,infeats)

 return X

This function generates the fake data that was sampled from the random
distribution as output.

4. Now, let's go ahead and define the function for building the generator network:

Function for the generator model

def genModel(infeats,outfeats):

 # Defining the Generator model

 Genmodel = Sequential()

 Genmodel.add(Dense(32,activation = 'linear',\

 kernel_initializer='he_uniform',\

 input_dim=infeats))

 Genmodel.add(Dense(32,activation = 'relu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(64,activation = 'elu',\

 kernel_initializer='he_uniform'))

https://packt.live/3iIJHVS

350 | Generative Adversarial Networks

 Genmodel.add(Dense(32,activation = 'elu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(32,activation = 'selu',\

 kernel_initializer='he_uniform'))

 Genmodel.add(Dense(outfeats,activation = 'selu'))

 return Genmodel

This is the same function we built in Exercise 7.02, Building a Generative Network.
This function returns the generator model.

5. In this step, we will define the function that will create fake samples using the
generator network:

Function to create fake samples using the generator model

def fakedataGenerator(Genmodel,batch,infeats):

 # first generate the inputs to the model

 genInputs = fakeInputs(batch,infeats)

 """

 use these inputs inside the generator model

 to generate fake distribution

 """

 X_fake = Genmodel.predict(genInputs)

 # Generate the labels of fake data set

 y_fake = np.zeros((batch,1))

 return X_fake,y_fake

The function we are defining here takes the random data distribution as input
(to the generator network we defined in the previous step) and generates the
fake distribution. The label for the fake distribution, which is 0, is also generated
within the function. In other words, the outputs from this function are the fake
dataset and its label.

6. Now, let's define the parameters that we will be using within the
different functions:

"""

Define the arguments like batch size,input feature size

and output feature size

"""

batch = 128

infeats = 10

outfeats = 2

Introduction | 351

7. Next, let's build the discriminator model as a function:

Discriminator model as a function

def discModel(outfeats):

 Discmodel = Sequential()

 Discmodel.add(Dense(16, activation='relu',\

 kernel_initializer = 'he_uniform',\

 input_dim=outfeats))

 Discmodel.add(Dense(16,activation='relu' ,\

 kernel_initializer = 'he_uniform'))

 Discmodel.add(Dense(16,activation='relu' ,\

 kernel_initializer = 'he_uniform'))

 Discmodel.add(Dense(1,activation='sigmoid'))

 # Compiling the model

 Discmodel.compile(loss='binary_crossentropy',\

 optimizer='adam',metrics=['accuracy'])

 return Discmodel

The network architecture will be like the one we developed in
Exercise 7.03, Implementing the Discriminator Network. This function
will return the discriminator.

8. Print the summary of the discriminator network:

Print the summary of the discriminator model

Discmodel = discModel(outfeats)

Discmodel.summary()

You should get the following output:

Figure 7.12: Discriminator model summary

352 | Generative Adversarial Networks

This output is the same as the one we received for the network we implemented
in Exercise 7.03, Implementing the Discriminator Network, where we defined the
discriminator function.

9. Invoke the generator model function for use in the training process:

Calling the Generator model function

Genmodel = genModel(infeats,outfeats)

Genmodel.summary()

You should get the following output:

Figure 7.13: Generator model summary

You will notice that the architecture is the same as what we developed in Exercise
7.02, Building a Generative Network.

10. Before we begin training, let's visualize the fake data distribution. For this, we
generate the fake dataset using the fakedataGenerator() function and
then visualize it using pyplot:

Let us visualize the initial fake data

x_fake, _ = fakedataGenerator(Genmodel,batch,infeats)

Plotting the fake data using pyplot

pyplot.scatter(x_fake[:, 0], x_fake[:, 1], color='blue')

Adding x and y labels

Introduction | 353

pyplot.xlabel('Feature 1 of the distribution')

pyplot.ylabel('Feature 2 of the distribution')

pyplot.show()

You should get an output similar to the following. Please note that data
generation is stochastic in nature (random) and that you might not get the
same plot:

Figure 7.14: Plot from the fake input distribution

From the preceding plot, you can see that the data distribution is quite random.
We need to convert this random data into a form similar to the sine wave, which
was our real data distribution.

11. Now, let's define the GAN model as a function. This function is similar to the
pseudocode we developed in Process 4, where we defined the GAN. The GAN
is a wrapper model around the generator model and the discriminator model.
Please note that we define the discriminator model as not trainable within
this function:

"""

Define the combined generator and discriminator model,

for updating the generator

"""

354 | Generative Adversarial Networks

def ganModel(Genmodel,Discmodel):

 # First define that discriminator model cannot be trained

 Discmodel.trainable = False

 Ganmodel = Sequential()

 # First adding the generator model

 Ganmodel.add(Genmodel)

 """

 Next adding the discriminator model

 without training the parameters

 """

 Ganmodel.add(Discmodel)

 # Compile the model for loss to optimise the Generator model

 Ganmodel.compile(loss='binary_crossentropy',optimizer = 'adam')

 return Ganmodel

This function will return the GAN model.

12. Now, let's invoke the GAN function. Please note that the inputs to the GAN
model are the previously defined generator model and the discriminator model:

Initialise the gan model

gan_model = ganModel(Genmodel,Discmodel)

13. Print the summary of the GAN model:

Print summary of the GAN model

gan_model.summary()

You should get the following output:

Figure 7.15: Summary of the GAN model

Note that the parameters of each layer of the GAN model are equivalent to the
parameters of the generator and discriminator models. The GAN model is just a
wrapper around these two models we defined earlier.

Introduction | 355

14. Let's define the number of epochs to train the network:

Defining the number of epochs

nEpochs = 20000

15. Now, we start the process of training the network:

Exercise7.04.ipynb

Train the GAN network
for i in range(nEpochs):
 # Generate the random number for generating real samples
 loc = np.random.normal(3,1,1)
 """
 Generate samples equal to the bath size
 from the real distribution
 """
 x_real, y_real = realData(loc,batch)
 #Generate fake samples using the fake data generator function
 x_fake, y_fake = fakedataGenerator(Genmodel,batch,infeats)
 # train the discriminator on the real samples
 Discmodel.train_on_batch(x_real, y_real)
 # train the discriminator on the fake samples
 Discmodel.train_on_batch(x_fake, y_fake)

The complete code for this step can be found at https://packt.live/3iIJHVS

It needs to be noted here that the training of the discriminator model with the
fake and real samples and the training of the GAN model happens concurrently.
The only difference is that training the GAN model proceeds without updating
the parameters of the discriminator model. The other thing to note is that, inside
the GAN, the labels for the fake samples would be 1. This is to generate large
loss terms that will be backpropagated through the discriminator network to
update the generator parameters.

Note:

Please note that the third line of code from the bottom (filename =
'GAN_Training_Plot%03d.png' % (i)) saves a plot once every
2,000 epochs. The plots will be saved in the same folder that your Jupyter
Notebook is located in. You can also specify the path you want to save the
plots at. This can be done as follows:

filename = 'D:/Project/GAN_Training_Plot%03d.png' %
(i)

You can access the plots that were generated through this exercise at
https://packt.live/2W1FjaI.

https://packt.live/3iIJHVS
https://packt.live/2W1FjaI

356 | Generative Adversarial Networks

You should get an output similar to the one shown here. Since the predictions
are stochastic in nature (that is to say, they're random), you might not get the
same plots shown in this example. Your values may vary; however, they will be
similar to what's shown here:

Real accuracy:0.2421875,Fake accuracy:0.0234375

Real accuracy:0.625,Fake accuracy:0.609375

Real accuracy:0.6484375,Fake accuracy:0.9609375

Real accuracy:0.84375,Fake accuracy:0.734375

Real accuracy:0.3671875,Fake accuracy:0.734375

Real accuracy:0.53125,Fake accuracy:0.703125

Real accuracy:0.578125,Fake accuracy:0.640625

Real accuracy:0.640625,Fake accuracy:0.8203125

Real accuracy:0.515625,Fake accuracy:0.7109375

Real accuracy:0.5625,Fake accuracy:0.859375

From the preceding output, you can see that the real dataset accuracy levels are
progressively going down and that the fake dataset's accuracy is going up. In
ideal situations, the accuracy of the discriminator network has to be around the
0.5 level, which indicates that the discriminator is really confused as to whether
a sample is fake or real. Now, let's look at some of the plots that were generated
at different epoch levels as to how the data points are converging to look like
the real function. The following plot is the distribution of the random data point
before it was fed into the GAN (Step 10):

Figure 7.16: Plot from the fake input distribution

Introduction | 357

Notice the distribution of the data where the data points are mostly centered
on a mean of 0. This is because the random points are generated from a normal
distribution that has a mean of 0 and a standard deviation of 1. Now, using the raw
data, let's study the progression of the fake dataset as the generator is trained.

Note

To access the source code for this specific section, please refer
to https://packt.live/3iIJHVS.

You can also run this example online at https://packt.live/3gF5DPW.
You must execute the entire Notebook in order to get the desired result.

The three plots shown below map the progression of the fake data distribution
vis-a-vis the real data distribution. The x axis represents feature 1, while the y axis
represents feature 2. In the plots, the red points pertain to the data from the real
distribution and the blue plots pertain to the data from the fake distribution. From
the following plot, we can see that at epoch 2000, the fake plots are within the
domain; however, they are not aligned to the shape of the real data distribution.

Figure 7.17: Plot of fake data distribution vis-à-vis the real data distribution at epoch 2000

https://packt.live/3iIJHVS
https://packt.live/3gF5DPW

358 | Generative Adversarial Networks

By epoch 10000, which is when the generator has been trained almost halfway, there
is a consolidation nearer to the real data distribution:

Figure 7.18: Plot of fake data distribution vis-à-vis the real data distribution at epoch 10000

By epoch 18000, we can see that most of the points are aligned to the real data
distribution, which is an indicator that the GAN has been trained reasonably well.

Figure 7.19: Plot of fake data distribution vis-à-vis the real data distribution at epoch 18000

Deep Convolutional GANs | 359

However, you can see that the data points after x = 4 have a lot more noise than
the ones on the left. One reason for this could be the random data distribution
we generated before we trained the GAN(Step 10) contains data that is distributed
predominantly between -2 and 4. Such data is aligning well to the target distribution
(sine wave) within the same range and is a little wobbly around the target distribution
to the right of x = 4. However, you should also note that getting 100% alignment
to the target distribution is an extremely difficult proposition that would involve
experimenting with different model architectures and more experiments. We
encourage you to experiment and be innovative with different components within the
architecture to get the distribution more aligned.

Note

The results we have gotten in the above exercise will vary every time we
run the code.

This brings us to the end of the complete process of progressively building a GAN.
Through a series of exercises, we have learned what a GAN is, its constituents, and
how all of them are tied together to train a GAN. We will take what we've learned
forward and develop more advanced GANs using different datasets.

Deep Convolutional GANs
In the previous sections, where we implemented a GAN, we made use of an
architecture based on the Multi-Layer Perceptron (MLP). As you may recall from the
previous chapters, MLPs have fully connected layers. This implies that all the neurons
in each layer have connections to all the neurons of the subsequent layer. For this
reason, MLPs are also called fully connected layers. The GAN that we developed in the
previous section can also be called a Fully Connected GAN (FCGAN). In this section,
we will learn about another architecture called Deep Convolutional GANs (DCGANS).
As the name implies, this is based on the Convolutional Neural Network (CNN)
architecture that you learned about in Chapter 4, Deep Learning for Text – Embeddings.
Let's revisit some of the building blocks of DCGANs.

Building Blocks of DCGANs

Most of the building blocks of DCGANs are similar to what you learned about when
you were introduced to CNNs in Chapter 3, Image Classification with Convolutional
Neural Networks. Let's revisit some of the important ones.

360 | Generative Adversarial Networks

Convolutional Layers

As you learned in Chapter 3, Image Classification with Convolutional Neural Networks,
convolutional operations involve filters or kernels moving over the input image to
generate a set of feature maps. The convolutional layer can be implemented in Keras
using the following line of code:

from tensorflow.keras import Sequential

model = Sequential()

model.add(Conv2D(64, kernel_size=(5, 5),\

 strides=(2,2), padding='same'))

Note

The above code block is solely meant to explain how the code is
implemented. It may not result in a desirable output when run in its current
form. For now, try to understand the syntax completely; we will be putting
this code into practice soon.

In the first part of the preceding code, the Sequential() class is imported from
the tensorflow.keras module. It is then instantiated to a variable model in the
second line of code. The convolutional layer is added to the Sequential() class
by defining the number of filters, kernel size, the required strides, and the padding
indicators. In the preceding line of code, 64 indicates the number of feature maps. A
kernel_size value of (5,5) indicates the size of the filters that will be convolved
over the input image to generate the feature maps. The strides value of (2,2)
indicates that the filters will move two cells at a time, both horizontally and vertically,
in the process of generating the feature maps. padding = 'same' indicates that
we want the output of the convolutional operation to be of the same size as the input.

Note:

The choice of architecture to use, such as the number of filters, size
of kernels, stride, and more, is an art and can be mastered with lots of
experimentation on the domain.

Deep Convolutional GANs | 361

Activation Functions

In the previous section, we implemented some activation functions such as ReLU,
ELU, SELU, and linear. In this section, we will be introduced to another activation
function called LeakyReLU. LeakyReLU is another variation of ReLU. Unlike ReLU,
which doesn't allow any negative values, LeakyReLU allows a small non-zero gradient
that is controlled by a factor, α. This factor, α, controls the slope of the gradient for
the negative values.

Upsampling Operation

In a CNN, an image gets down-sampled to lower dimensions by operations such as
max pooling and convolutional operations. However, in a GAN, the dynamics of a
generator network operate in a direction opposite to the convolutional operation;
that is, from lower or coarser dimensions, we have to transform an image to a denser
form (that is, with more dimensions). One way to do that is through an operation
called UpSampling. In this operation, the input dimensions are doubled. Let's
understand this operation in more detail using a small example.

The following code can be used to import the required library files. The function that's
specific for UpSampling is UpSampling2D from keras.layers:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import UpSampling2D

The following code creates a simple model that takes an array of shape (3,3,1) as
input in the UpSampling layer:

A model for UpSampling2d

model = Sequential()

model.add(UpSampling2D(input_shape=(3,3,1)))

model.summary()

The output will be as follows:

Figure 7.20: Model summary for UpSampling2D

362 | Generative Adversarial Networks

From the summary, we can see that the output has been doubled to (None,
6,6,1), wherein the middle two dimensions have been doubled. To understand
what change this makes to an array of shape (3,3,1), we will need to define an
array of size (3,3), as follows:

Defining an array of shape (3,3)

import numpy as np

X = np.array([[1,2,3],[4,5,6],[7,8,9]])

X.shape

The output will be as follows:

(3, 3)

The array we've defined has only two dimensions. However, the input to the
model we defined needs four dimensions, where the dimensions are in the order
(examples, width, height, channels). We can create the additional
dimensions using the reshape() function, as follows:

Reshaping the array

X = X.reshape((1,3,3,1))

X.shape

The output will be as follows:

(1, 3, 3, 1)

We can use the following code to make some predictions with the UpSampling
model we created and observe the dimensions of the resultant array:

Predicting with the model

y = model.predict(X)

Printing the output shape

y[0,:,:,0]

The output will be as follows:

Figure 7.21: Output shape of the unsampled model

Deep Convolutional GANs | 363

From the preceding output, we can see how the resultant array has been
transformed. As we can see, each of the inputs has been doubled to get the resultant
array. We will be using the UpSampling method in Exercise 7.05, Implementing
the DCGAN.

Transpose Convolution

Transpose convolution is different from the UpSampling method we just saw.
UpSampling was more or less a naïve doubling of the input values. However,
transpose convolutions have weights that are learned during the training phase.
Transpose convolutions work similarly to convolutional operations but in reverse.
Instead of reducing the dimensions, transpose convolutions expand the dimensions
of the input through a combination of the kernel size and its strides. As learned in
Chapter 3, Image Processing with Convolutional Neural Networks, strides are the step
sizes where we convolve or move the filters over the image to get an output. We
also control the output of transpose convolutions with the padding = 'same'
parameter, just like we do in convolutional operations.

Let's take a look at a code example of how transpose convolutions work.

First, we will need to import the necessary library files. The function that's specific to
transpose convolution operations is Conv2DTranspose from keras.layers:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2DTranspose

Now, we can create a simple model that takes an image of shape (3,3,1) in the
transpose convolution layer:

A model for transpose convolution

model = Sequential()

model.add(Conv2DTranspose(1,(4,4),(2,2),\

 input_shape=(3,3,1),padding='same'))

model.summary()

364 | Generative Adversarial Networks

In the transpose convolution layer, the first parameter (1) is the number of filters.
The second one (4,4) is the size of kernel and the last one (2,2) is the strides.
With padding = 'same', the output will not be dependent on the size of the
kernel but will be multiples of the stride and the input dimension. The summary that
will be generated by the preceding code will be as follows:

Figure 7.22: Summary of the model

From the summary, we can see that the output has been doubled to (None,
6,6,1), which would work like the multiplying the strides by the input dimensions
(None, 2 × 3, 2 × 3, 1).

Now, let's see what changes occur to a real array of shape (1,3,3,1). Remember
that we also created this array earlier:

Defining an array of shape (3,3)

X = np.array([[1,2,3],[4,5,6],[7,8,9]])

X = X.reshape((1,3,3,1))

X.shape

The output is as follows:

(1, 3, 3, 1)

To generate the transposed array, we need to make some predictions using the
transpose convolution model we created. By printing the shape, we can also observe
the dimensions of the resultant array:

 # Predicting with the model

y = model.predict(X)

Printing the shape

print(y.shape)

Printing the output shape

y[0,:,:,0]

Deep Convolutional GANs | 365

The output will be as follows:

Figure 7.23: Transformed array

Note

The output you get may vary from the one we have shown above.

From the preceding output, we can see how the resultant array has been
transformed. The values in the generated array are the end result of the dynamics
between the weights of the kernel on the input image.

Now that we have seen some of the basic building blocks of a DCGAN, we'll go ahead
and build it in the next exercise.

Generating Handwritten Images Using DCGANs

Now, we will try to generate a data distribution similar to the data pertaining to
handwritten digits using a DCGAN. We will be using the MNIST handwritten digits
dataset as the real dataset. This dataset has a training set of 60,000 examples, all of
which are handwritten images of digits from 0 to 9. The implementation process for
this GAN will be similar to Exercise 7.04, Implementing the GAN, where we implemented
the GAN for the known function. Let's look at the steps we will follow for this
problem statement.

366 | Generative Adversarial Networks

First, we'll need to define the function that will be used to generate a real
data distribution:

Get the MNIST data

 (X_train, _), (_, _) = mnist.load_data()

The preceding function will generate the real data distribution from the MNIST
dataset. The train and test sets can be generated using the mnist.load_data()
function. Using this function, we get all the related datasets in the form (X_
train,y_train),(X_test,y_test). Since we only require the X_train data,
we do not store the other datasets in variables.

The MNIST data is two-dimensional; that is, (width, height). Since we require three-
dimensional data (width, height, channel) for convolutional operations, we need to
create the third dimension as 1 using the np.newaxis function. Please note that the
first dimensions will be the number of examples:

Reshaping the input data to include channel

 X = X_train[:,:,:,np.newaxis]

Generating a batch of data

 imageBatch = X[np.random.randint(0, X.shape[0], size=batch)]

The other process is to generate batches of the training data. To generate batches
of data, we sample some integers between 0 and the number of examples in
the training set. The sample's size will be equal to the batch size we want. This is
implemented as follows:

Generating a batch of data

 imageBatch = X[np.random.randint(0, X.shape[0], size=batch)]

We will only be returning the X variable. The labels that are batches of 1s will be
separately generated during the training process.

Then, we need to define the three functions that will be used for generating fake
samples. These are a function for generating fake inputs, a function for the generator
network, and a function for generating fake samples and labels. Most of these
functions are the same as what we developed in Exercise 7.04, Implementing the GAN.
The generator model will be constructed as a convolutional model with intermittent
use of Up-Sampling/Converse2Dtranspose operations.

Deep Convolutional GANs | 367

Next, we need to create a new function for the discriminator network. This
discriminator model will, again, be a convolutional model with the final layer as a
sigmoid layer where we output a probability, that is, the probability of an image being
real or fake. The input dimensions to the discriminator model will be the dimensions
of the images generated from MNIST and the fake images, which will be (batch size,
28,28,1).

The GAN model will be the same as the one we created in Exercise 7.04, Implementing
the GAN. This function will have the generator model and the discriminator model as
its inputs.

The Training Process

The training process will be similar to the process we implemented in Exercise 7.04,
Implementing the GAN. The steps for the training process are as follows:

1. Generate a batch of MNIST data using the function to generate a real dataset.

2. Generate a batch of fake samples using function 3 described in the functions for
generating fake samples.

3. Concatenate the real samples and fake samples into one DataFrame. This will be
the input variable for the discriminator model.

4. The labels will be a series of 1s and 0s corresponding to the real data and fake
data that was concatenated earlier.

5. Train the discriminator model using the train_on_batch() function using
the X variable and the labels.

6. Generate another batch of fake inputs for training the GAN model. These fake
samples are generated using function 1 in the fake sample generation process.

7. Generate the labels for the fake samples that are intended to fool the
discriminator. These labels will be 1s instead of 0s.

8. Train the GAN model using the train_on_batch() function using the fake
samples and its labels, as described in Steps 6 and 7.

9. Steps 1 to 8 are repeated for the number of epochs we want the training to run
for. This is done through a for loop over the number of epochs.

10. At every intermediate step, we calculate the accuracy of the discriminator model.

11. We also generate output plots at certain epochs.

368 | Generative Adversarial Networks

Now that we have seen the complete process behind training a DCGAN, let's dive into
the next exercise, which implements this process.

Exercise 7.05: Implementing the DCGAN

In this exercise, we will build and train the DCGAN on the MNIST dataset. We will use
the MNIST dataset as the real data distribution. We will then generate fake data from
a random distribution. After that, we will train the GAN to generate data that is similar
to the MNIST dataset's. Follow these steps to complete this exercise:

1. Open a new Jupyter Notebook and name it Exercise 7.05. Import the
following library packages and the MNIST dataset:

Import the required library functions

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import pyplot

import tensorflow as tf

from tensorflow.keras.layers import Input

from tensorflow.keras.initializers import RandomNormal

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.layers \

import Reshape, Dense, Dropout, Flatten,Activation

from tensorflow.keras.layers import LeakyReLU,BatchNormalization

from tensorflow.keras.layers \

import Conv2D, UpSampling2D,Conv2DTranspose

from tensorflow.keras.datasets import mnist

from tensorflow.keras.optimizers import Adam

2. Define the function that will be used to generate real datasets. The real dataset
is generated from the MNIST data:

Note:

Alternatively, you can download the MNIST dataset from
https://packt.live/2X4xeCL

Function to generate real data samples

def realData(batch):

 # Get the MNIST data

 (X_train, _), (_, _) = mnist.load_data()

https://packt.live/2X4xeCL

Deep Convolutional GANs | 369

 # Reshaping the input data to include channel

 X = X_train[:,:,:,np.newaxis]

 # normalising the data

 X = (X.astype('float32') - 127.5)/127.5

 # Generating a batch of data

 imageBatch = X[np.random.randint(0, X.shape[0], size=batch)]

 return imageBatch

The return value from this function is the batch of MNIST data. Note that we
normalize the input data by subtracting 127.5, which is half the maximum pixel
values (255), and divide by the same amount. This will help with converging the
solution faster.

3. Now, let's generate a set of images from the MNIST dataset:

Generating a batch of images

mnistData = realData(25)

4. Next, let's visualize the plots using matplotlib:

Plotting the image

for j in range(5*5):

 pyplot.subplot(5,5,j+1)

 # turn off axis

 pyplot.axis('off')

 pyplot.imshow(mnistData[j,:,:,0],cmap='gray_r')

You should get an output similar to the following:

Figure 7.24: Visualized data – digits from the dataset

From the output, we can see the visualization of some of the digits. We can see
that the image is centrally positioned within a white background.

Note

The digits that are visualized when you run the code will differ from the ones
we've shown here.

370 | Generative Adversarial Networks

5. Define the function to generate inputs for the generator network. The fake data
will be random data points generated from a uniform distribution:

Function to generate inputs for generator function

def fakeInputs(batch,infeats):

 #Generate random noise data with shape (batch,input features)

 x_fake = np.random.uniform(-1,1,size=[batch,infeats])

 return x_fake

6. Let's define the function for building the generator network. Building the
generator network is similar to building any CNN network. In this generator
network, we will use the UpSampling method:

Exercise7.05.ipynb

Function for the generator model
def genModel(infeats):
 # Defining the Generator model
 Genmodel = Sequential()
 Genmodel.add(Dense(512,input_dim=infeats))
 Genmodel.add(Activation('relu'))
 Genmodel.add(BatchNormalization())
 # second layer of FC => RElu => BN layers
 Genmodel.add(Dense(7*7*64))
 Genmodel.add(Activation('relu'))

The complete code for this step can be found on https://packt.live/2ZPg8cJ.

In the model, we can see the progressive use of the transpose convolution
operation. The initial input has the dimensions of 100. This is progressively
increased to the desired image size of batch size x 28 x 28 through a series of
transpose convolution operations.

7. Next, we define the function to create fake samples. In this function, we only
return the X variable:

Function to create fake samples using the generator model

def fakedataGenerator(Genmodel,batch,infeats):

 # first generate the inputs to the model

 genInputs = fakeInputs(batch,infeats)

 """

 use these inputs inside the generator model

 to generate fake distribution

 """

 X_fake = Genmodel.predict(genInputs)

 return X_fake

https://packt.live/2ZPg8cJ

Deep Convolutional GANs | 371

The return value from this function is the fake dataset.

8. Define the parameters that we will use, along with the summary of the
generator network:

Define the arguments like batch size and input feature

batch = 128

infeats = 100

Genmodel = genModel(infeats)

Genmodel.summary()

You should get the following output:

Figure 7.25 Summary of the model

From the summary, please note how the dimension of the input changes with
each transpose convolution operation. Finally, we get an output that is equal in
dimension to the real data set: (None,28 ,28,1).

372 | Generative Adversarial Networks

9. Let's use the generator function to generate a fake sample before training:

Generating a fake sample and printing the shape

fake = fakedataGenerator(Genmodel,batch,infeats)

fake.shape

You should get the following output:

(128, 28, 28, 1)

10. Now, let's plot the generated fake sample:

Plotting the fake sample

plt.imshow(fake[1, :, :, 0], cmap='gray_r')

plt.xlabel('Fake Sample Image')

You should get an output similar to the one shown here:

Figure 7.26: Plot of the fake sample image

This is the plot of the fake sample before training. After training, we want
samples like these to look like the MNIST samples we visualized earlier in
this exercise.

Deep Convolutional GANs | 373

11. Now, let's build the discriminator model as a function. The network will be a CNN
network like the one you learned about in Chapter 3, Image Classification with
Convolutional Neural Networks:

Exercise7.05.ipynb

Descriminator model as a function
def discModel():
 Discmodel = Sequential()
 Discmodel.add(Conv2D(32,kernel_size=(5,5),strides=(2,2), \
 padding='same',input_shape=(28,28,1)))
 Discmodel.add(LeakyReLU(0.2))
 # second layer of convolutions
 Discmodel.add(Conv2D(64, kernel_size=(5,5), \
 strides=(2, 2), padding='same'))

The complete code for this step can be found on https://packt.live/2ZPg8cJ.

In the discriminator network, we have included all the necessary layers, such as
the convolutional operations and LeakyReLU activations. Please note that the
last layer is a sigmoid layer as we want the output as a probability of the sample
to be real (1) or fake (0).

12. Print the summary of the discriminator network:

Print the summary of the discriminator model

Discmodel = discModel()

Discmodel.summary()

You should get the following output:

Figure 7.27: Summary of the model architecture

https://packt.live/2ZPg8cJ

374 | Generative Adversarial Networks

The preceding screenshot shows the summary of the model architecture. This
is based on the different layers we implemented using the Sequential class.
For example, we can see that the first layer has 32 filter maps, the second layer
has 64 filter maps, and the last layer has one output that corresponds to the
sigmoid activation.

13. Next, define the GAN model as a function:

"""

Define the combined generator and discriminator model,

for updating the generator

"""

def ganModel(Genmodel,Discmodel):

 # First define that discriminator model cannot be trained

 Discmodel.trainable = False

 Ganmodel = Sequential()

 # First adding the generator model

 Ganmodel.add(Genmodel)

 """

 Next adding the discriminator model

 without training the parameters

 """

 Ganmodel.add(Discmodel)

 # Compile the model for loss to optimise the Generator model

 Ganmodel.compile(loss='binary_crossentropy',\

 optimizer = 'adam')

 return Ganmodel

The structure of the GAN model is similar to the one we developed in Exercise
7.04, Implementing the GAN.

14. Now, it's time to invoke the GAN function. Please note that the inputs to the GAN
model are the previously defined generator and discriminator models:

Initialise the gan model

gan_model = ganModel(Genmodel,Discmodel)

Print summary of the GAN model

gan_model.summary()

Deep Convolutional GANs | 375

From the preceding code, we can see that the inputs to the GAN model are the
previously defined generator and discriminator models. You should get the
following output:

Figure 7.28: Model summary

Please note that the parameters of each layer of the GAN model are equivalent
to the parameters of the generator and discriminator models. The GAN model is
just a wrapper around the models we defined earlier.

15. Define the number of epochs to train the network:

Defining the number of epochs

nEpochs = 5000

16. Now, let's train the GAN:

Note:

Before you run the code that follows, make sure you have a folder titled
handwritten in the same path as your Jupyter Notebook.

Exercise7.05.ipynb

Train the GAN network
for i in range(nEpochs):
 """
 Generate samples equal to the bath size
 from the real distribution
 """
 x_real = realData(batch)
 #Generate fake samples using the fake data generator function
 x_fake = fakedataGenerator(Genmodel,batch,infeats)
 # Concatenating the real and fake data
 X = np.concatenate([x_real,x_fake])
 #Creating the dependent variable and initializing them as '0'
 Y = np.zeros(batch * 2)

The full code for this step can be found at https://packt.live/2ZPg8cJ.

https://packt.live/2ZPg8cJ

376 | Generative Adversarial Networks

From the preceding code, we can see that the training of the discriminator model
with the fake and real samples and the training of the GAN model happens
concurrently. The only difference is the training of the GAN model proceeds
without updating the parameters of the discriminator model. The other thing
to note is that, inside the GAN, the labels for the fake samples would be 1 to
generate large loss terms that will be backpropagated through the discriminator
network to update the generator parameters. We also display the predicted
probability of the GAN for every 10 epochs. When calculating the probability,
we combine a sample of real data and fake data and then take the mean of the
predicted probability. We also save a copy of the generated image.

Note:

We'll analyze the plots that will be generated in the section that follows.

You should get an output similar to the following:

Discriminator probability:0.6213402152061462

Discriminator probability:0.7360671758651733

Discriminator probability:0.6130768656730652

Discriminator probability:0.5046337842941284

Discriminator probability:0.5005484223365784

Discriminator probability:0.50015789270401

Discriminator probability:0.5000558495521545

Discriminator probability:0.5000174641609192

Discriminator probability:0.5000079274177551

Discriminator probability:0.4999823570251465

Discriminator probability:0.5000027418136597

Discriminator probability:0.5000032186508179

Discriminator probability:0.5000043511390686

Discriminator probability:0.5000077486038208

Note

The output for the preceding code may not be an exact match with what you
get when you run the code.

Deep Convolutional GANs | 377

From the predicted probability of the test data, we can see that the values are
hovering around the .55 mark. This is an indication that the discriminator is
confused about whether the image is fake or real. If the discriminator were sure
that an image was real, it would predict a probability close to 1, while it would
predict a probability close to 0 if it were sure that the image was fake. In our
case, we can see that the probability is around the .55 mark, which indicates that
the generator is learning to generate images similar to the real images. This has
confused the discriminator. A value close to 50% accuracy for the discriminator is
the desired value.

17. Now, let's generate fake images after the training process and visualize them:

Images predicted after training

x_fake = fakedataGenerator(Genmodel,25,infeats)

Visualizing the plots

for j in range(5*5):

 pyplot.subplot(5,5,j+1)

 # turn off axis

 pyplot.axis('off')

 pyplot.imshow(x_fake[j,:,:,0],cmap='gray_r')

The output will be as follows:

Figure 7.29: Predicted image post training

We can see that the generated images from the trained generator model closely
resonate with the real handwritten digits.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZPg8cJ.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/2ZPg8cJ

378 | Generative Adversarial Networks

In this exercise, we developed a GAN to generate distributions similar to MNIST
handwritten digits. In the section that follows, we will analyze the images that were
generated at each epoch during this exercise.

Analysis of Sample Plots

Now, let's look at the output sample plots from the previous exercise to see what
the generated images look like. By completing the previous exercise, these should
have been saved in the same path where your Jupyter Notebook is located, under a
subfolder called handwritten:

Figure 7.30: Sample plot after 10 iterations

The preceding images are those that were generated after 10 iterations. We can see
that these images look more like random noise. However, we can also see that there
are traces of white patches forming within the image, which indicates the GAN is
learning some of the features of the real image:

 Figure 7.31: Sample plot after 500 iterations

Deep Convolutional GANs | 379

The preceding images are the plots after 500 iterations. From these images, we can
see some semblance of the real image. We can see that the white background of the
real images is being formed. We can also see the distribution getting aggregated at
the center of the image:

 Figure 7.32: Sample plot after 2,000 iterations

The preceding image is after 2,000 iterations. We can see that many digits have
started to form; for example, 8, 5 ,3 ,9 ,4, 7, 0, and so on. We can also see that the
dark shades of the images have started to become more pronounced. Now, let's look
at the images that were generated during the last iteration:

Figure 7.33: Sample plot after 5,000 iterations

A question to ask at this stage is, are these images perfect? Absolutely not. Would
running the training for more epochs improve the results further? Not necessarily.
Getting those perfect images would entail hours of training and experimentation with
different model architectures. You can take this as a challenge to improve the output
through your choices of architecture and the parameters within the model.

GANs are a really active area of research and the possibilities they are opening up
point to the direction of computers slowly becoming creative. However, there are
some common problems when implementing GANs. Let's look at some of them.

380 | Generative Adversarial Networks

Common Problems with GANs

GANs are difficult networks to train and stabilize. There are different failure modes
for GANs. Let's get a perspective of some of the common failure modes.

Mode Collapse

A very common failure mode of GANs, especially on multi-modal data, is a situation
called mode collapse. This refers to a situation where the generator learns only some
specific variety of the distribution within the data. For example, in an MNIST data
distribution, if the GAN generates only one particular digit (say, 5) after training, then
this is a case of mode collapse.

One way to combat mode collapse is to group data according to the different classes
and train the discriminator accordingly. This will give the discriminator the ability to
identify different modes that are present in the data.

Convergence Failure

Another prominent failure mode in GANs is convergence failure. In this failure mode,
the network fails to converge with the loss as it never settles during the training
phase. Some methods that researchers have used to get over this problem include
adding noise to discriminatory networks and penalizing discriminator weights
through regularization techniques.

Notwithstanding the numerous challenges inherent in training and building GANs,
it still remains one of the most active areas of research within the deep learning
community. The promises and the applications that are made possible by GANs are
what make this area one of the most sought-after domains in deep learning. Now
that we have laid some of the foundations for GANs, let's use what we've learned to
build a GAN for a different dataset.

Deep Convolutional GANs | 381

Activity 7.01: Implementing a DCGAN for the MNIST Fashion Dataset

In this activity, you will implement a DCGAN to generate images similar to the
ones found in the MNIST fashion dataset. The MNIST fashion dataset is similar
to the handwritten digital images dataset that you implemented in Exercise 7.05,
Implementing the DCGAN. This dataset consists of grayscale images of 10 different
fashion accessories and comprises 60,000 training samples. The following is a sample
of the images included in this dataset:

Figure 7.34: Sample of the MNIST fashion dataset

The objective of this activity is to build a GAN and generate images similar to the
fashion dataset. The high-level steps for this activity will be similar to Exercise 7.05,
Implementing the DCGAN, where you implemented a DCGAN for handwritten digits.
You will be completing this activity in two parts, first by creating the relevant functions
and then by training the model.

382 | Generative Adversarial Networks

Generating Key Functions: Here, you will be creating the required functions, such as
the generator function and the discriminator function:

1. Define the function that will generate a real data distribution. This function
has to generate the real data distribution from the MNIST fashion dataset. The
fashion dataset can be imported using the following code:

from tensorflow.keras.datasets import fashion_mnist

The training set can be generated using the fashion_mnist.load_
data() function.

Note:

Alternatively, you can download the dataset from https://packt.live/2X4xeCL.

2. Define the three functions that will be used to generate fake samples; that
is, the function for generating fake inputs, the function for the generator
network, and the function for generating fake samples and labels. Use
Converse2Dtranspose operations within the generator function.

3. Create a new function for the discriminator network.

4. Create the GAN model. You can take cues from Exercise 7.05, Implementing the
DCGAN, on how to do this.

The Training Process: You will follow a process similar to the one in Exercise 7.05,
Implementing the DCGAN:

1. Generate a batch of MNIST data using the function for generating a real dataset.

2. Generate a batch of fake samples using the third function described in the
functions for generating fake samples.

3. Concatenate the real samples and fake samples into one DataFrame and
generate their labels.

4. Train the discriminator model using the train_on_batch() function using
the X variable and the labels.

5. Generate another batch of fake inputs for training the GAN model, along with
their labels.

6. Train the GAN model using the train_on_batch() function using the fake
samples and their labels.

https://packt.live/2X4xeCL

Summary | 383

7. Repeat the training for around 5,000 epochs.

8. At every intermediate step, calculate the accuracy of the discriminator model.

The discriminator probabilities you'll get should be around 0.5. The expected output
will be a generated image that looks similar to the one shown here:

Figure 7.35: Expected output for this activity

Note:

The detailed steps for this activity, along with the solutions and additional
commentary, are presented on page 426.

Summary
You have come a long way from being introduced to one of the most promising
areas in deep learning. Let's revisit some of the concepts that we learned about in
this chapter.

We started this chapter by understanding what GANs are and their major
applications. We then went on to understand the various building blocks of GANs,
such as the real datasets, fake datasets, the discriminator operation, the generator
operation, and the GAN operation.

384 | Generative Adversarial Networks

We executed a problem statement to progressively build a fully connected GAN
(FCGAN) to solve a real function. In the process of building the GAN, we also
implemented exercises for creating real datasets, creating fake datasets, creating a
generator network, creating a discriminator network, and finally combining all these
individual components to create the GAN. We visualized the different plots and
understood how the generated data distribution mimicked the real data distribution.

In the next section, we understood the concept of DCGANs. We also visited some of
the unique concepts in DCGANs such as upsampling and transpose convolutions. We
implemented a GAN for the MNIST digital handwritten images and visualized the fake
images we generated using a DCGAN. Finally, we also implemented a DCGAN for the
MNIST fashion dataset in an activity.

Having laid the foundations, the next question is, where do we go from here? GANs
are a large area by itself and there's quite a lot of buzz around it these days. To start
with, it would be good to tweak the models you have already learned by tweaking the
architecture and activation functions and trying out other parameters such as batch
normalization. After playing around with different variations of the current models, it
will be time to explore other networks such as the Least Squares GAN (LSGAN) and
Wasserstein GAN (WGAN). Then, there is this large playing field of conditional GANs
such as the Conditional GAN (cGan), InfoGAN, Auxiliary Classifier GAN (AC-GAN),
and Semi-Supervised GAN (SGAN). Once you've done this, you'll have set the stage
for advanced topics such as CycleGAN, BigGAN, and StyleGAN.

This chapter also brings down the curtain on the amazing journey you've made
throughout this book. First, you were introduced to what deep learning is and the
different use cases that are possible with deep learning. Subsequently, you learned
the basics of neural networks, which are the foundations of deep learning. From
there, you went on to learn about advanced techniques such as CNNs, which are the
workhorses for use cases such as image recognition. Along with that, you learned
about recurrent neural networks, which can be used for sequence data. Finally, you
were introduced to GANs, a class of networks that's making lots of waves within the
domain. Having equipped yourself with this set of tools now is the time to apply your
learning to your domain. The possibilities and opportunities are endless. All we need
to do is consolidate our current learning and move ahead step by step. I wish you all
the best on your journey in scaling new peaks in the deep learning domain.

Appendix

388 | Appendix

Chapter 1: Building Blocks of Deep Learning

Activity 1.01: Solving a Quadratic Equation Using an Optimizer

Solution

Let's solve the following quadratic equation:

Figure 1.29: Quadratic equation to be solved

We already know that the solution to this quadratic equation is x=5.

We can use an optimizer to solve this. For the optimizer, x is the variable and the cost
function is the left-hand side expression, which is as follows:

Figure 1.30: Left-hand side expression

The optimizer will find the value of x for which the expression is the minimum – in
this case, it is 0. Please note that this will work only for quadratic equations that are
perfect squares, such as in this case. The left-hand side expression is a perfect square
that can be explained with the following equation:

Figure 1.31: Perfect square

Now, let's look at the code for solving this:

1. Open a new Jupyter Notebook and rename it Activity 1.01.

2. Import tensorflow:

import tensorflow as tf

3. Create the variable x and initialize it to 0.0:

x=tf.Variable(0.0)

Chapter 1: Building Blocks of Deep Learning | 389

4. Construct the loss function as a lambda function:

loss=lambda:abs(x**2-10*x+25)

5. Create an instance of an optimizer with a learning rate of .01:

optimizer=tf.optimizers.Adam(.01)

6. Run the optimizer through 10,000 iterations. You can start with a smaller
number such as 1,000 and keep increasing the number of iterations until you get
the solution:

for i in range(10000):

 optimizer.minimize(loss,x)

7. Print the value of x:

tf.print(x)

The output is as follows:

4.99919891

This is the solution to our quadratic equation. It may be noted that, irrespective of the
number of iterations, you will never get a perfect 5.

Note

To access the source code for this specific section, please refer
to https://packt.live/3gBTFGA.

You can also run this example online at https://packt.live/2Dqa2Id.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3gBTFGA
https://packt.live/2Dqa2Id

390 | Appendix

Chapter 2: Neural Networks

Activity 2.01: Build a Multilayer Neural Network to Classify Sonar Signals

Solution

Let's see how the solution looks. Remember—this is one solution, but there could be
many variations:

1. Import all the required libraries:

import tensorflow as tf

import pandas as pd

from sklearn.preprocessing import LabelEncoder

Import Keras libraries

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense

2. Load and examine the data:

df = pd.read_csv('sonar.csv')

df.head()

The output is:

Figure 2.37: Contents of sonar.csv

Observe that there are 60 features, and the target has two values—Rock
and Mine.

This means that this is a binary classification problem. Let's prepare the data
before we build the neural network.

3. Separate the features and the labels:

X_input = df.iloc[:, :-1]

Y_label = df['Class'].values

Chapter 2: Neural Networks | 391

In this code, X_input is selecting all the rows of all the columns except the
Class column, and Y_label is just selecting the Class column.

4. Labels are in text format. We need to encode them as numbers before we can
use them with our model:

labelencoder_Y = LabelEncoder()

Y_label = labelencoder_Y.fit_transform(Y_label)

Y_label = Y_label.reshape([208, 1])

The reshape function at the end will convert the labels into matrix format,
which is expected by the model.

5. Build the multilayer model with Keras:

model = Sequential()

model.add(Dense(300,input_dim=60, activation = 'relu'))

model.add(Dense(200, activation = 'relu'))

model.add(Dense(100, activation = 'relu'))

model.add(Dense(1, activation = 'sigmoid'))

You can experiment with the number of layers and neurons, but the last layer
can only have one neuron with a sigmoid activation function, since this is a
binary classifier.

6. Set the training parameters:

model.compile(optimizer='adam',loss='binary_crossentropy', \

 metrics=['accuracy'])

7. Train the model:

model.fit(X_input, Y_label, epochs=30)

The truncated output will be somewhat similar to the following:

Train on 208 samples

Epoch 1/30

208/208 [==============================] - 0s 205us/sample -

loss:

 0.1849 - accuracy: 0.9038

Epoch 2/30

208/208 [==============================] - 0s 220us/sample –

loss:

 0.1299 - accuracy: 0.9615

Epoch 3/30

392 | Appendix

208/208 [==============================] - 0s 131us/sample –

loss:

 0.0947 - accuracy: 0.9856

Epoch 4/30

208/208 [==============================] - 0s 151us/sample –

loss:

 0.1046 - accuracy: 0.9712

Epoch 5/30

208/208 [==============================] - 0s 171us/sample –

loss:

 0.0952 - accuracy: 0.9663

Epoch 6/30

208/208 [==============================] - 0s 134us/sample –

loss:

 0.0777 - accuracy: 0.9856

Epoch 7/30

208/208 [==============================] - 0s 129us/sample –

loss:

 0.1043 - accuracy: 0.9663

Epoch 8/30

208/208 [==============================] - 0s 142us/sample –

loss:

 0.0842 - accuracy: 0.9712

Epoch 9/30

208/208 [==============================] - 0s 155us/sample –

loss:

 0.1209 - accuracy: 0.9423

Epoch 10/30

208/208 [==============================] - ETA: 0s - loss:

 0.0540 - accuracy: 0.98 - 0s 334us/sample - los

Chapter 2: Neural Networks | 393

8. Let's evaluate the trained model and examine its accuracy:

model.evaluate(X_input, Y_label)

The output is as follows:

208/208 [==============================] - 0s 128us/sample –

loss:

 0.0038 - accuracy: 1.0000

 [0.003758653004367191, 1.0]

As you can see, we have been able to successfully train a multilayer binary neural
network and get 100% accuracy within 30 epochs.

Note

To access the source code for this specific section, please refer
to https://packt.live/38EMoDi.

You can also run this example online at https://packt.live/2W2sygb.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/38EMoDi
https://packt.live/2W2sygb

394 | Appendix

Chapter 3: Image Classification with Convolutional Neural
Networks (CNNs)

Activity 3.01: Building a Multiclass Classifier Based on the Fashion

MNIST Dataset

Solution

1. Open a new Jupyter Notebook.

2. Import tensorflow.keras.datasets.fashion_mnist:

from tensorflow.keras.datasets import fashion_mnist

3. Load the Fashion MNIST dataset using fashion_mnist.load_data() and
save the results to (features_train, label_train), (features_
test, label_test):

(features_train, label_train), (features_test, label_test) = \

fashion_mnist.load_data()

4. Print the shape of the training set:

features_train.shape

The output will be as follows:

(60000, 28, 28)

The training set is composed of 60000 images of size 28 by 28. We will need to
reshape it and add the channel dimension.

5. Print the shape of the testing set:

features_test.shape

The output will be as follows:

(10000, 28, 28)

The testing set is composed of 10000 images of size 28 by 28. We will need to
reshape it and add the channel dimension

Chapter 3: Image Classification with Convolutional Neural Networks (CNNs) | 395

6. Reshape the training and testing sets with the dimensions (number_rows,
28, 28, 1):

features_train = features_train.reshape(60000, 28, 28, 1)

features_test = features_test.reshape(10000, 28, 28, 1)

7. Create three variables called batch_size, img_height, and img_width
that take the values 16, 28, and 28, respectively:

batch_size = 16

img_height = 28

img_width = 28

8. Import ImageDataGenerator from tensorflow.keras.
preprocessing:

from tensorflow.keras.preprocessing.image \

import ImageDataGenerator

9. Create an ImageDataGenerator called train_img_gen with data
augmentation: rescale=1./255, rotation_range=40, width_
shift_range=0.1, height_shift_range=0.1, shear_
range=0.2, zoom_range=0.2, horizontal_flip=True, fill_
mode='nearest':

train_img_gen = ImageDataGenerator(rescale=1./255, \

 rotation_range=40, \

 width_shift_range=0.1, \

 height_shift_range=0.1, \

 shear_range=0.2, \

 zoom_range=0.2, \

 horizontal_flip=True, \

 fill_mode='nearest')

10. Create an ImageDataGenerator called val_img_gen with rescaling (by
dividing by 255):

val_img_gen = ImageDataGenerator(rescale=1./255)

396 | Appendix

11. Create a data generator called train_data_gen using .flow() and specify
the batch size, features, and labels from the training set:

train_data_gen = train_img_gen.flow(features_train, \

 label_train, \

 batch_size=batch_size)

12. Create a data generator called val_data_gen using .flow() and specify the
batch size, features, and labels from the testing set:

val_data_gen = train_img_gen.flow(features_test, \

 label_test, \

 batch_size=batch_size)

13. Import numpy as np, tensorflow as tf, and layers from
tensorflow.keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

14. Set 8 as the seed for numpy and tensorflow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

15. Instantiate a tf.keras.Sequential() class into a variable called model
with the following layers: A convolution layer with 64 kernels of shape 3,
ReLU as the activation function, and the necessary input dimensions; a max
pooling layer; a convolution layer with 128 kernels of shape 3 and ReLU as the
activation function; a max pooling layer; a flatten layer; a fully connected layer
with 128 units and ReLU as the activation function; a fully connected layer with
10 units and softmax as the activation function.

Chapter 3: Image Classification with Convolutional Neural Networks (CNNs) | 397

The code should be as follows:

model = tf.keras.Sequential\

 ([layers.Conv2D(64, 3, activation='relu', \

 input_shape=(img_height, \

 img_width ,1)), \

 layers.MaxPooling2D(), \

 layers.Conv2D(128, 3, \

 activation='relu'), \

 layers.MaxPooling2D(),\

 layers.Flatten(), \

 layers.Dense(128, \

 activation='relu'), \

 layers.Dense(10, \

 activation='softmax')])

16. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

17. Compile the neural network using .compile() with loss='sparse_
categorical_crossentropy', optimizer=optimizer,
metrics=['accuracy']:

model.compile(loss='sparse_categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

18. Fit the neural networks with fit_generator() and provide the train
and validation data generators, epochs=5, the steps per epoch, and the
validation steps:

model.fit_generator(train_data_gen, \

 steps_per_epoch=len(features_train) \

 // batch_size, \

 epochs=5, \

 validation_data=val_data_gen, \

 validation_steps=len(features_test) \

 // batch_size)

398 | Appendix

The expected output will be as follows:

Figure 3.30: Model training log

We trained our CNN on five epochs, and we achieved accuracy scores of 0.8271
on the training set and 0.8334 on the validation set, respectively. Our model is not
overfitting much and achieved quite a high score. The accuracy is still increasing after
five epochs, so we may get even better results if we keep training it. This is something
you may try by yourself.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ObmA8t.

You can also run this example online at https://packt.live/3fiyyJi.
You must execute the entire Notebook in order to get the desired result.

Activity 3.02: Fruit Classification with Transfer Learning

Solution

1. Open a new Jupyter Notebook.

2. Import tensorflow as tf:

import tensorflow as tf

https://packt.live/2ObmA8t
https://packt.live/3fiyyJi

Chapter 3: Image Classification with Convolutional Neural Networks (CNNs) | 399

3. Create a variable called file_url containing the link to the dataset:

file_url = 'https://github.com/PacktWorkshops'\

 '/The-Deep-Learning-Workshop'\

 '/raw/master/Chapter03/Datasets/Activity3.02'\

 '/fruits360.zip'

Note

In the aforementioned step, we are using the dataset stored at
https://packt.live/3eePQ8G. If you have stored the dataset at any
other URL, please change the highlighted path accordingly.

4. Download the dataset using tf.keras.get_file with 'fruits360.zip',
origin=file_url, extract=True as parameters and save the result to a
variable called zip_dir:

zip_dir = tf.keras.utils.get_file('fruits360.zip', \

 origin=file_url, \

 extract=True)

5. Import the pathlib library:

import pathlib

6. Create a variable called path containing the full path to the fruits360_
filtered directory using pathlib.Path(zip_dir).parent:

path = pathlib.Path(zip_dir).parent / 'fruits360_filtered'

7. Create two variables called train_dir and validation_dir that take the
full paths to the train (Training) and validation (Test) folders, respectively:

train_dir = path / 'Training'

validation_dir = path / 'Test'

8. Create two variables called total_train and total_val that will get the
number of images for the training and validation sets, that is, 11398 and 4752:

total_train = 11398

total_val = 4752

https://packt.live/3eePQ8G

400 | Appendix

9. Import ImageDataGenerator from tensorflow.keras.
preprocessing:

from tensorflow.keras.preprocessing.image \

import ImageDataGenerator

10. Create an ImageDataGenerator called train_img_gen with data
augmentation: rescale=1./255, rotation_range=40, width_
shift_range=0.1, height_shift_range=0.1, shear_
range=0.2, zoom_range=0.2, horizontal_flip=True, fill_
mode='nearest':

train_img_gen = ImageDataGenerator(rescale=1./255, \

 rotation_range=40, \

 width_shift_range=0.1, \

 height_shift_range=0.1, \

 shear_range=0.2, \

 zoom_range=0.2, \

 horizontal_flip=True, \

 fill_mode='nearest')

11. Create an ImageDataGenerator called val_img_gen with rescaling (by
dividing by 255):

val_img_gen = ImageDataGenerator(rescale=1./255)

12. Create four variables called batch_size, img_height, img_width, and
channel that take the values 16, 100, 100, and 3, respectively:

batch_size=16

img_height = 100

img_width = 100

channel = 3

13. Create a data generator called train_data_gen using .flow_from_
directory() and specify the batch size, training folder, and target size:

train_data_gen = train_image_generator.flow_from_directory\

 (batch_size=batch_size, \

 directory=train_dir, \

 target_size=(img_height, img_width))

Chapter 3: Image Classification with Convolutional Neural Networks (CNNs) | 401

14. Create a data generator called val_data_gen using .flow_from_
directory() and specify the batch size, validation folder, and target size:

val_data_gen = validation_image_generator.flow_from_directory\

 (batch_size=batch_size, \

 directory=validation_dir, \

 target_size=(img_height, img_width))

15. Import numpy as np, tensorflow as tf, and layers from tensorflow.
keras:

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers

16. Set 8 as the seed for numpy and tensorflow using np.random_seed() and
tf.random.set_seed():

np.random.seed(8)

tf.random.set_seed(8)

17. Import VGG16 from tensorflow.keras.applications:

from tensorflow.keras.applications import VGG16

18. Instantiate a VGG16 model into a variable called base_model with the
following parameters:

base_model = VGG16(input_shape=(img_height, \

 img_width, channel), \

 weights='imagenet', \

 include_top=False)

19. Set this model to non-trainable using the .trainable attribute:

base_model.trainable = False

20. Print the summary of this VGG16 model:

base_model.summary()

402 | Appendix

The expected output will be as follows:

Figure 3.31: Model summary

This output shows us the architecture of VGG16. We can see that there are
14,714,688 parameters in total, but there is no trainable parameter. This is
expected as we have frozen all the layers of this model.

21. Create a new model using tf.keras.Sequential() by adding
the base model to the following layers: Flatten(), Dense(1000,
activation='relu'), and Dense(120, activation='softmax').
Save this model to a variable called model:

model = tf.keras.Sequential([base_model, \

 layers.Flatten(), \

 layers.Dense(1000, \

 activation='relu'), \

 layers.Dense(120, \

 activation='softmax')])

Chapter 3: Image Classification with Convolutional Neural Networks (CNNs) | 403

22. Instantiate a tf.keras.optimizers.Adam() class with 0.001 as the
learning rate and save it to a variable called optimizer:

optimizer = tf.keras.optimizers.Adam(0.001)

23. Compile the neural network using .compile() with loss='categorical_
crossentropy', optimizer=optimizer, metrics=['accuracy']:

model.compile(loss='categorical_crossentropy', \

 optimizer=optimizer, metrics=['accuracy'])

24. Fit the neural networks with fit_generator() and provide the train and
validation data generators, epochs=5, the steps per epoch, and the validation
steps. This model may take a few minutes to train:

model.fit_generator(train_data_gen, \

 steps_per_epoch=len(features_train) \

 // batch_size, \

 epochs=5, \

 validation_data=val_data_gen, \

 validation_steps=len(features_test) \

 // batch_size)

The expected output will be as follows:

Figure 3.32: Expected output

404 | Appendix

Here, we used transfer learning to customize a pretrained VGG16 model on ImageNet
so that it fits our fruit classification dataset. We replaced the head of the model with
our own fully connected layers and trained these layers on five epochs. We achieved
an accuracy score of 0.9106 for the training set and 0.8920 for the testing set.
These are quite remarkable results given the time and hardware used to train this
model. You can try to fine-tune this model and see whether you can achieve an even
better score.

Note

To access the source code for this specific section, please refer
to https://packt.live/2DsVRCl.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/2DsVRCl

Chapter 4: Deep Learning for Text – Embeddings | 405

Chapter 4: Deep Learning for Text – Embeddings

Activity 4.01: Text Preprocessing of the 'Alice in Wonderland' Text

Solution

You need to perform the following steps:

Note

Before commencing this activity, make sure you have defined the
alice_raw variable as demonstrated in the section titled Downloading
Text Corpora Using NLTK.

1. Change the data to lowercase and separate into sentences:

txt_sents = tokenize.sent_tokenize(alice_raw.lower())

2. Tokenize the sentences:

txt_words = [tokenize.word_tokenize(sent) for sent in txt_sents]

3. Import punctuation from the string module and stopwords from NLTK:

from string import punctuation

stop_punct = list(punctuation)

from nltk.corpus import stopwords

stop_nltk = stopwords.words("english")

4. Create a variable holding the contextual stop words -- and said:

stop_context = ["--", "said"]

5. Create a master list for the stop words to remove words that contain terms from
punctuation, NLTK stop words, and contextual stop words:

stop_final = stop_punct + stop_nltk + stop_context

6. Define a function to drop these tokens from any input sentence (tokenized):

def drop_stop(input_tokens):

 return [token for token in input_tokens \

 if token not in stop_final]

406 | Appendix

7. Remove the terms in stop_final from the tokenized text:

alice_words_nostop = [drop_stop(sent) for sent in txt_words]

print(alice_words_nostop[:2])

Here's what the first two sentences look like:

[['alice', "'s", 'adventures', 'wonderland', 'lewis', 'carroll',
'1865', 'chapter', 'i.', 'rabbit-hole', 'alice', 'beginning',
'get', 'tired', 'sitting', 'sister', 'bank', 'nothing', 'twice',
'peeped', 'book', 'sister', 'reading', 'pictures', 'conversations',
"'and", 'use', 'book', 'thought', 'alice', "'without", 'pictures',
'conversation'], ['considering', 'mind', 'well', 'could', 'hot',
'day', 'made', 'feel', 'sleepy', 'stupid', 'whether', 'pleasure',
'making', 'daisy-chain', 'would', 'worth', 'trouble', 'getting',
'picking', 'daisies', 'suddenly', 'white', 'rabbit', 'pink', 'eyes',
'ran', 'close']]

8. Using the PorterStemmer algorithm from NLTK, perform stemming on the
result. Print out the first five sentences of the result:

from nltk.stem import PorterStemmer

stemmer_p = PorterStemmer()

alice_words_stem = [[stemmer_p.stem(token) for token in sent] \

 for sent in alice_words_nostop]

print(alice_words_stem[:5])

The output will be as follows:

[['alic', "'s", 'adventur', 'wonderland', 'lewi', 'carrol', '1865',
'chapter', 'i.', 'rabbit-hol', 'alic', 'begin', 'get', 'tire',
'sit', 'sister', 'bank', 'noth', 'twice', 'peep', 'book', 'sister',
'read', 'pictur', 'convers', "'and", 'use', 'book', 'thought',
'alic', "'without", 'pictur', 'convers'], ['consid', 'mind', 'well',
'could', 'hot', 'day', 'made', 'feel', 'sleepi', 'stupid', 'whether',
'pleasur', 'make', 'daisy-chain', 'would', 'worth', 'troubl', 'get',
'pick', 'daisi', 'suddenli', 'white', 'rabbit', 'pink', 'eye', 'ran',
'close'], ['noth', 'remark', 'alic', 'think', 'much', 'way', 'hear',
'rabbit', 'say', "'oh", 'dear'], ['oh', 'dear'], ['shall', 'late']]

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

You can also run this example online at https://packt.live/38Gr54r.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2VVNEgf
https://packt.live/38Gr54r

Chapter 4: Deep Learning for Text – Embeddings | 407

Activity 4.02: Text Representation for Alice in Wonderland

Solution

You need to perform the following steps:

1. From Activity 4.01, Text Preprocessing Alice in Wonderland, print the first three
sentences from the result after stop word removal. This is the data you will
work with:

print(alice_words_nostop[:3])

The output is as follows:

[['alice', "'s", 'adventures', 'wonderland', 'lewis', 'carroll',
'1865', 'chapter', 'i.', 'rabbit-hole', 'alice', 'beginning',
'get', 'tired', 'sitting', 'sister', 'bank', 'nothing', 'twice',
'peeped', 'book', 'sister', 'reading', 'pictures', 'conversations',
"'and", 'use', 'book', 'thought', 'alice', "'without", 'pictures',
'conversation'], ['considering', 'mind', 'well', 'could', 'hot',
'day', 'made', 'feel', 'sleepy', 'stupid', 'whether', 'pleasure',
'making', 'daisy-chain', 'would', 'worth', 'trouble', 'getting',
'picking', 'daisies', 'suddenly', 'white', 'rabbit', 'pink', 'eyes',
'ran', 'close'], ['nothing', 'remarkable', 'alice', 'think', 'much',
'way', 'hear', 'rabbit', 'say', "'oh", 'dear']]

2. Import word2vec from Gensim and train your word embeddings with
default parameters:

from gensim.models import word2vec

model = word2vec.Word2Vec(alice_words_nostop)

3. Find the 5 terms most similar to rabbit:

model.wv.most_similar("rabbit", topn=5)

The output is as follows:

[('alice', 0.9963310360908508),

 ('little', 0.9956872463226318),

 ('went', 0.9955698251724243),

 ("'s", 0.9955658912658691),

 ('would', 0.9954401254653931)]

4. Using a window size of 2, retrain the word vectors:

model = word2vec.Word2Vec(alice_words_nostop, window=2)

408 | Appendix

5. Find the terms most similar to rabbit:

model.wv.most_similar("rabbit", topn=5)

The output will be as follows:

[('alice', 0.9491485357284546),

 ("'s", 0.9364748001098633),

 ('little', 0.9345826506614685),

 ('large', 0.9341927170753479),

 ('duchess', 0.9341296553611755)]

6. Retrain word vectors using the Skip-gram method with a window size of 5:

model = word2vec.Word2Vec(alice_words_nostop, window=5, sg=1)

7. Find the terms most similar to rabbit:

model.wv.most_similar("rabbit", topn=5)

The output will be as follows:

[('gardeners', 0.9995723366737366),

 ('end', 0.9995588064193726),

 ('came', 0.9995309114456177),

 ('sort', 0.9995298385620117),

 ('upon', 0.9995272159576416)]

8. Find the representation for the phrase white rabbit by averaging the vectors
for white and rabbit:

v1 = model.wv['white']

v2 = model.wv['rabbit']

res1 = (v1+v2)/2

9. Find the representation for mad hatter by averaging the vectors for mad and
hatter:

v1 = model.wv['mad']

v2 = model.wv['hatter']

res2 = (v1+v2)/2

10. Find the cosine similarity between these two phrases:

model.wv.cosine_similarities(res1, [res2])

Chapter 4: Deep Learning for Text – Embeddings | 409

This gives us the following value:

array([0.9996213], dtype=float32)

11. Load the pre-trained GloVe embeddings of size 100D using the formatted
keyed vectors:

from gensim.models.keyedvectors import KeyedVectors

glove_model = KeyedVectors.load_word2vec_format\

("glove.6B.100d.w2vformat.txt", binary=False)

12. Find representations for white rabbit and mad hatter:

v1 = glove_model['white']

v2 = glove_model['rabbit']

res1 = (v1+v2)/2

v1 = glove_model['mad']

v2 = glove_model['hatter']

res2 = (v1+v2)/2

13. Find the cosine similarity between the two phrases. Has the cosine
similarity changed?

glove_model.cosine_similarities(res1, [res2])

The following is the output of the preceding code:

array([0.4514577], dtype=float32)

Here, we can see that the cosine similarity between the two phrases "mad hatter"
and "white rabbit" is far lower from the GloVe model. This is because the GloVe
model hasn't seen the terms together in its training data as much as they appear in
the book. In the book, the terms mad and hatter appear together a lot because
they form the name of an important character. In other contexts, of course, we don't
see mad and hatter together as often.

Note

To access the source code for this specific section, please refer
to https://packt.live/2VVNEgf.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/2VVNEgf

410 | Appendix

Chapter 5: Deep Learning for Sequences

Activity 5.01: Using a Plain RNN Model to Predict IBM Stock Prices

Solution

1. Import the necessary libraries, load the .csv file, reverse the index, and plot
the time series (the Close column) for visual inspection:

import pandas as pd, numpy as np

import matplotlib.pyplot as plt

inp0 = pd.read_csv("IBM.csv")

inp0 = inp0.sort_index(ascending=False)

inp0.plot("Date", "Close")

plt.show()

The output will be as follows, with the closing price plotted on the Y-axis:

Figure 5.40: The trend for IBM stock prices

Chapter 5: Deep Learning for Sequences | 411

2. Extract the values for Close from the DataFrame as a numpy array and plot
them using matplotlib:

ts_data = inp0.Close.values.reshape(-1,1)

plt.figure(figsize=[14,5])

plt.plot(ts_data)

plt.show()

The resulting trend is as follows, with the index plotted on the X-axis:

Figure 5.41: The stock price data visualized

3. Assign the final 25% data as test data and the first 75% as train data:

train_recs = int(len(ts_data) * 0.75)

train_data = ts_data[:train_recs]

test_data = ts_data[train_recs:]

len(train_data), len(test_data)

The output will be as follows:

(1888, 630)

4. Using MinMaxScaler from sklearn, scale the train and test data:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

train_scaled = scaler.fit_transform(train_data)

test_scaled = scaler.transform(test_data)

412 | Appendix

5. Using the get_lookback function we defined earlier in this chapter (refer to
the Preparing the Data for Stock Price Prediction section), get the lookback data for
the train and test sets using a lookback period of 10:

look_back = 10

trainX, trainY = get_lookback(train_scaled, look_back=look_back)

testX, testY = get_lookback(test_scaled, look_back= look_back)

trainX.shape, testX.shape

The output will be as follows:

((1888, 10), (630, 10))

6. From Keras, import all the necessary layers for employing plain RNNs
(SimpleRNN, Activation, Dropout, Dense, and Reshape) and 1D
convolutions (Conv1D). Also, import the mean_squared_error metric
from sklearn:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, Activation, Dropout,
Dense, Reshape, Conv1D
from sklearn.metrics import mean_squared_error

7. Build a model with a 1D convolution layer (5 filters of size 3) and an RNN
layer with 32 neurons. Add 25% dropout after the RNN layer. Print the
model's summary:

model_comb = Sequential()

model_comb.add(Reshape((look_back,1), \

 input_shape = (look_back,)))

model_comb.add(Conv1D(5, 3, activation='relu'))

model_comb.add(SimpleRNN(32))

model_comb.add(Dropout(0.25))

model_comb.add(Dense(1))

model_comb.add(Activation('linear'))

model.summary()

Chapter 5: Deep Learning for Sequences | 413

The output will be as follows:

Figure 5.42: Summary of the model

8. Compile the model with the mean_squared_error loss and the adam
optimizer. Fit this on the train data in five epochs, with a validation split of 10%
and a batch size of 1:

model_comb.compile(loss='mean_squared_error', \

 optimizer='adam')

model_comb.fit(trainX, trainY, epochs=5, \

 batch_size=1, verbose=2, \

 validation_split=0.1)

The output will be as follows:

Figure 5.43: Training and validation loss

414 | Appendix

9. Using the get_model_perf method, print the RMSE of the model:

get_model_perf(model_comb)

The output will be as follows:

Train RMSE: 0.03 RMSE

Test RMSE: 0.03 RMSE

10. Plot the predictions – the entire view, as well as the zoomed-in view:

%matplotlib notebook

plt.figure(figsize=[10,5])

plot_pred(model_comb)

We should see the following plot of predictions (dotted lines) versus the actuals
(solid lines):

Figure 5.44: Predictions versus actuals

Chapter 5: Deep Learning for Sequences | 415

The zoomed-in view is as follows:

Figure 5.45: Predictions (dotted lines) versus actuals (solid lines) – detailed view

We can see that the model does a great job of catching the finer patterns and does
extremely well at predicting the daily stock price.

Note

To access the source code for this specific section, please refer
to https://packt.live/2ZctArW.

You can also run this example online at https://packt.live/38EDOEA.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/2ZctArW
https://packt.live/38EDOEA

416 | Appendix

Chapter 6: LSTMs, GRUs, and Advanced RNNs

Activity 6.01: Sentiment Analysis of Amazon Product Reviews

Solution

1. Read in the data files for the train and test sets. Examine the shapes of the
datasets and print out the top 5 records from the train data:

import pandas as pd, numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

train_df = pd.read_csv("Amazon_reviews_train.csv")

test_df = pd.read_csv("Amazon_reviews_test.csv")

print(train_df.shape, train_df.shape)

train_df.head(5)

The dataset's shape and header are as follows:

Figure 6.26: First five records from the train dataset

2. For convenience, when it comes to processing, separate the raw text and the
labels for the train and test sets. You should have 4 variables, as follows:
train_raw comprising raw text for the train data, train_labels with labels
for the train data, test_raw containing raw text for the test data, and test_
labels comprising Labels for the test data. Print the first two reviews from the
train text.

train_raw = train_df.review_text.values

train_labels = train_df.label.values

Chapter 6: LSTMs, GRUs, and Advanced RNNs | 417

test_raw = test_df.review_text.values

test_labels = test_df.label.values

train_raw[:2]

The preceding code results in the following output:

Figure 6.27: Raw text from the train dataset

3. Normalize the case and tokenize the test and train texts using NLTK's word_
tokenize (after importing it, of course – hint: use a list comprehension
for cleaner code). Download punkt from nltk if you haven't used the
tokenizer before. Print the first review from the train data to check if the
tokenization worked.

import nltk

nltk.download('punkt')

from nltk.tokenize import word_tokenize

train_tokens = [word_tokenize(review.lower()) \

 for review in train_raw]

test_tokens = [word_tokenize(review.lower()) \

 for review in test_raw]

print(train_tokens[0])

The tokenized data gets printed as follows:

Figure 6.28: Tokenized review from the train dataset

418 | Appendix

4. Import any stop words (built in to NLTK) and punctuation from the string
module. Define a function (drop_stop) to remove these tokens from any input
tokenized sentence. Download stopwords from NLTK if you haven't used
it before:

from string import punctuation

stop_punct = list(punctuation)

nltk.download("stopwords")

from nltk.corpus import stopwords

stop_nltk = stopwords.words("english")

stop_final = stop_punct + stop_nltk

def drop_stop(input_tokens):

 return [token for token in input_tokens \

 if token not in stop_final]

5. Using the defined function (drop_stop), remove the redundant stop words
from the train and the test texts. Print the first review of the processed
train texts to check whether the function worked:

train_tokens_no_stop = [drop_stop(sent) \

 for sent in train_tokens]

test_tokens_no_stop = [drop_stop(sent) \

 for sent in test_tokens]

print(train_tokens_no_stop[0])

We'll get the following output:

['stuning', 'even', 'non-gamer', 'sound', 'track', 'beautiful',

 'paints', 'senery', 'mind', 'well', 'would', 'recomend', 'even',

 'people', 'hate', 'vid', 'game', 'music', 'played', 'game',

 'chrono', 'cross', 'games', 'ever', 'played', 'best', 'music',

 'backs', 'away', 'crude', 'keyboarding', 'takes', 'fresher',

 'step', 'grate', 'guitars', 'soulful', 'orchestras', 'would',

 'impress', 'anyone', 'cares', 'listen', '^_^']

Chapter 6: LSTMs, GRUs, and Advanced RNNs | 419

6. Using PorterStemmer from NLTK, stem the tokens for both the train and
test data:

from nltk.stem import PorterStemmer

stemmer_p = PorterStemmer()

train_tokens_stem = [[stemmer_p.stem(token) for token in sent] \

 for sent in train_tokens_no_stop]

test_tokens_stem = [[stemmer_p.stem(token) for token in sent] \

 for sent in test_tokens_no_stop]

print(train_tokens_stem[0])

The result should be printed as follows:

['stune', 'even', 'non-gam', 'sound', 'track', 'beauti', 'paint',

 'seneri', 'mind', 'well', 'would', 'recomend', 'even', 'peopl',

 'hate', 'vid', 'game', 'music', 'play', 'game', 'chrono', 'cross',

 'game', 'ever', 'play', 'best', 'music', 'back', 'away', 'crude',

 'keyboard', 'take', 'fresher', 'step', 'grate', 'guitar', 'soul',

 'orchestra', 'would', 'impress', 'anyon', 'care', 'listen', '^_^']

7. Create the strings for each of the train and text reviews. This will help us
work with the utilities in Keras to create and pad the sequences. Create the
train_texts and test_texts variables. Print the first review from the
processed train data to confirm this:

train_texts = [" ".join(txt) for txt in train_tokens_stem]

test_texts = [" ".join(txt) for txt in test_tokens_stem]

print(train_texts[0])

The result of the preceding code is as follows:

stune even non-gam sound track beauti paint seneri mind well would
recommend even peopl hate vid game music play game chrono cross game
ever play best music back away crude keyboard take fresher step grate
guitar soul orchestra would impress anyon care listen ^_^

8. From Keras' preprocessing utilities for text (keras.preprocessing.text),
import the Tokenizer module. Define a vocabulary size of 10000 and
instantiate the tokenizer with this vocabulary:

from tensorflow.keras.preprocessing.text import Tokenizer

vocab_size = 10000

tok = Tokenizer(num_words=vocab_size)

420 | Appendix

9. Fit the tokenizer on the train texts. This works just like CountVectorizer
did in Chapter 4, Deep Learning for Text – Embeddings, and trains the vocabulary.
After fitting, use the texts_to_sequences method of the tokenizer on the
train and test sets to create the sequences for them. Print the sequence for
the first review in the train data:

tok.fit_on_texts(train_texts)

train_sequences = tok.texts_to_sequences(train_texts)

test_sequences = tok.texts_to_sequences(test_texts)

print(train_sequences[0])

The encoded sequence is as follows:

 [22, 514, 7161, 85, 190, 184, 1098, 283, 20, 11, 1267, 22,

 56, 370, 9682, 114, 41, 71, 114, 8166, 1455, 114, 51, 71,

 29, 41, 58, 182, 2931, 2153, 75, 8167, 816, 2666, 829, 719,

 3871, 11, 483, 120, 268, 110]

10. We need to find the optimal length of the sequences to process the model. Get
the length of the reviews from the train set into a list and plot a histogram of
the lengths:

seq_lens = [len(seq) for seq in train_sequences]

plt.hist(seq_lens)

plt.show()

Chapter 6: LSTMs, GRUs, and Advanced RNNs | 421

The distribution of the lengths is as follows:

Figure 6.29: Histogram of text lengths

11. The data is now in the same format as the IMDb data we used in this chapter.
Using a sequence length of 100 (define the maxlen = 100 variable), use the
pad_sequences method from the sequence module in Keras' preprocessing
utilities (keras.preprocessing.sequence) to limit the sequences to
100 for both the train and test data. Check the shape of the result for the
train data:

maxlen = 100

from tensorflow.keras.preprocessing.sequence import pad_sequences

X_train = pad_sequences(train_sequences, maxlen=maxlen)

X_test = pad_sequences(test_sequences, maxlen=maxlen)

X_train.shape

422 | Appendix

The shape is as follows:

(25000, 100)

12. To build the model, import all the necessary layers from Keras (embedding,
spatial dropout, LSTM, dropout, and dense) and import the
Sequential model. Initialize the Sequential model:

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Embedding,
SpatialDropout1D, Dropout, GRU, LSTM
model_lstm = Sequential()

13. Add an embedding layer with 32 as the vector size (output_dim). Add a
spatial dropout of 40%:

model_lstm.add(Embedding(vocab_size, output_dim=32))

model_lstm.add(SpatialDropout1D(0.4))

14. Build a stacked LSTM model with 2 layers that have 64 cells each. Add a
dropout layer with 40% dropout:

model_lstm.add(LSTM(64, return_sequences=True))

model_lstm.add(LSTM(64, return_sequences=False))

model_lstm.add(Dropout(0.4))

15. Add a dense layer with 32 neurons with relu activation, then a 50% dropout
layer, followed by another dense layer of 32 neurons with relu activation, and
follow this up with another dropout layer with 50% dropout:

model_lstm.add(Dense(32, activation='relu'))

model_lstm.add(Dropout(0.5))

model_lstm.add(Dense(32, activation='relu'))

model_lstm.add(Dropout(0.5))

16. Add a final dense layer with a single neuron with sigmoid activation and
compile the model. Print the model summary:

model_lstm.add(Dense(1, activation='sigmoid'))

model_lstm.compile(loss='binary_crossentropy', \

 optimizer='rmsprop', \

 metrics=['accuracy'])

model_lstm.summary()

Chapter 6: LSTMs, GRUs, and Advanced RNNs | 423

The summary of the model will be as follows:

Figure 6.30: Stacked LSTM model summary

17. Fit the model on the training data with a 20% validation split and a batch size of
128. Train for 5 epochs:

history_lstm = model_lstm.fit(X_train, train_labels, \

 batch_size=128, \

 validation_split=0.2, \

 epochs = 5)

424 | Appendix

We will get the following training output:

Figure 6.31: Stacked LSTM model training output

18. Make a prediction on the test set using the predict_classes method of the
model. Then, print out the confusion matrix:

from sklearn.metrics import accuracy_score, confusion_matrix

test_pred = model_lstm.predict_classes(X_test)

print(confusion_matrix(test_labels, test_pred))

We will get the following result:

[[10226, 1931],

 [1603, 11240]]

19. Using the accuracy_score method from scikit-learn, calculate the
accuracy of the test set.

print(accuracy_score(test_labels, test_pred))

The accuracy we get is:

0.85864

Chapter 6: LSTMs, GRUs, and Advanced RNNs | 425

As we can see, the accuracy score is around 86%, and looking at the confusion matrix
(output of step 18), the model does a decent job of predicting both classes well.
We got this accuracy without doing any hyperparameter tuning. You can tweak the
hyperparameters to get significantly higher accuracy.

Note

To access the source code for this specific section, please refer
to https://packt.live/3fpo0YI.

You can also run this example online at https://packt.live/2Wi75QH.
You must execute the entire Notebook in order to get the desired result.

https://packt.live/3fpo0YI
https://packt.live/2Wi75QH

426 | Appendix

Chapter 7: Generative Adversarial Networks

Activity 7.01: Implementing a DCGAN for the MNIST Fashion Dataset

Solution

1. Open a new Jupyter Notebook and name it Activity 7.01. Import the
following library packages:

Import the required library functions

import numpy as np

import matplotlib.pyplot as plt

from matplotlib import pyplot

import tensorflow as tf

from tensorflow.keras.layers import Input

from tensorflow.keras.initializers import RandomNormal

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.layers \

import Reshape, Dense, Dropout, Flatten,Activation

from tensorflow.keras.layers import LeakyReLU,BatchNormalization

from tensorflow.keras.layers import Conv2D,
UpSampling2D,Conv2DTranspose
from tensorflow.keras.datasets import fashion_mnist

from tensorflow.keras.optimizers import Adam

2. Create a function that will generate real data samples from the fashion
MNIST data:

Function to generate real data samples

def realData(batch):

 # Get the MNIST data

 (X_train, _), (_, _) = fashion_mnist.load_data()

 # Reshaping the input data to include channel

 X = X_train[:,:,:,np.newaxis]

 # normalising the data to be between 0 and 1

 X = (X.astype('float32') - 127.5)/127.5

 # Generating a batch of data

 imageBatch = X[np.random.randint(0, X.shape[0], \

 size=batch)]

 return imageBatch

Chapter 7: Generative Adversarial Networks | 427

The output from this function is the batch of MNIST data. Please note that we
normalize the input data by subtracting 127.5, which is half the max pixel value,
and dividing by the same value. This will help in converging the solution faster.

3. Now, let's generate a set of images from the MNIST dataset:

Generating a set of sample images

fashionData = realData(25)

You should get the following output:

Figure 7.36: Generating images from MNIST

4. Now, let's visualize the images with matplotlib:

 # for j in range(5*5):

 pyplot.subplot(5,5,j+1)

 # turn off axis

 pyplot.axis('off')

 pyplot.imshow(fashionData[j,:,:,0],cmap='gray_r')

You should get an output similar to the one shown here:

Figure 7.37: Plotted images

428 | Appendix

From the output, we can see the visualization of several fashion articles. We can
see that the images are centrally located within a white background. This are the
images that we'll try to recreate.

5. Now, let's define the function to generate inputs for the generator network.
The inputs are random data points that are generated from a random
uniform distribution:

Function to generate inputs for generator function

def fakeInputs(batch,infeats):

 # Generate random noise data with shape (batch,input features)

 x_fake = np.random.uniform(-1,1,size=[batch,infeats])

 return x_fake

This function generates the fake data that was sampled from the random
distribution as the output.

6. Let's define the function for building the generator network:

Activity7.01.ipynb

Function for the generator model
def genModel(infeats):
 # Defining the Generator model
 Genmodel = Sequential()
 Genmodel.add(Dense(512,input_dim=infeats))
 Genmodel.add(Activation('relu'))
 Genmodel.add(BatchNormalization())
 # second layer of FC => RElu => BN layers
 Genmodel.add(Dense(7*7*64))
 Genmodel.add(Activation('relu'))
 Genmodel.add(BatchNormalization())

The complete code for this step can be found at https://packt.live/3fpobDm

Building the generator network is similar to building any CNN network. In
this generator network, we will use the transpose convolution method for
upsampling images. In this model, we can see the progressive use of the
transpose convolution. The initial input starts with a dimension of 100, which is
our input feature. The dimension of the MNIST dataset is batch size x 28 x 28.
Therefore, we have upsampled the data twice to get the output as batch size
x 28 x 28.

https://packt.live/3fpobDm

Chapter 7: Generative Adversarial Networks | 429

7. Next, we define the function that will be used to create fake samples:

Function to create fake samples using the generator model

def fakedataGenerator(Genmodel,batch,infeats):

 # first generate the inputs to the model

 genInputs = fakeInputs(batch,infeats)

 """

 use these inputs inside the generator model \

 to generate fake distribution

 """

 X_fake = Genmodel.predict(genInputs)

 return X_fake

In this function, we only return the X variable. The output from this function is
the fake dataset.

8. Define the parameters that we will use in many of the functions, along with the
summary of the generator network:

Define the arguments like batch size and input feature

batch = 128

infeats = 100

Genmodel = genModel(infeats,)

Genmodel.summary()

430 | Appendix

You should get the following output:

Figure 7.38: Summary of the generative model

From the summary, please note how the dimension of the input noise changes
with each transpose convolution operation. Finally, we get an output that is
equal in dimension to the real dataset, (None,28 ,28,1).

9. Let's use the generator function to generate a fake sample before training:

Generating a fake sample and printing the shape

fake = fakedataGenerator(Genmodel,batch,infeats)

fake.shape

You should get the following output:

(128, 28, 28, 1)

Chapter 7: Generative Adversarial Networks | 431

10. Now, let's plot the generated fake sample:

Plotting the fake sample

plt.imshow(fake[1, :, :, 0], cmap='gray_r')

You should get an output similar to the following:

Figure 7.39: Output of the fake sample

This is the plot of the fake sample before training. After training, we want
samples like these to look like the MNIST fashion samples we visualized earlier in
this activity.

11. Build the discriminator model as a function. The network architecture will be
similar to a CNN architecture:

Activity7.01.ipynb

Descriminator model as a function
def discModel():
 Discmodel = Sequential()
 Discmodel.add(Conv2D(32,kernel_size=(5,5),strides=(2,2),\
 padding='same',input_shape=(28,28,1)))
 Discmodel.add(LeakyReLU(0.2))
 # second layer of convolutions
 Discmodel.add(Conv2D(64, kernel_size=(5,5), strides=(2, 2), \
 padding='same'))
 Discmodel.add(LeakyReLU(0.2))

The full code for this step can be found at https://packt.live/3fpobDm

https://packt.live/3fpobDm

432 | Appendix

In the discriminator network, we have included all the necessary layers, such as
the convolutional operations and LeakyReLU. Please note that the last layer is
a sigmoid layer as we want the output as a probability of whether the sample is
real (1) or fake (0).

12. Print the summary of the discriminator network:

Print the summary of the discriminator model

Discmodel = discModel()

Discmodel.summary()

You should get the following output:

Figure 7.40: Discriminator model summary

13. Define the GAN model as a function:

Define the combined generator and discriminator model, for updating
the generator
def ganModel(Genmodel,Discmodel):

 # First define that discriminator model cannot be trained

 Discmodel.trainable = False

 Ganmodel = Sequential()

 # First adding the generator model

Chapter 7: Generative Adversarial Networks | 433

 Ganmodel.add(Genmodel)

 """

 Next adding the discriminator model

 without training the parameters

 """

 Ganmodel.add(Discmodel)

 """

 Compile the model for loss to optimise the Generator model

 """

 Ganmodel.compile(loss='binary_crossentropy',\

 optimizer = 'adam')

 return Ganmodel

The structure of the GAN model is similar to the one we developed in Exercise
7.05, Implementing the DCGAN.

14. Now, it's time to invoke the GAN function:

Initialise the GAN model

gan_model = ganModel(Genmodel,Discmodel)

Print summary of the GAN model

gan_model.summary()

Please note that the inputs to the GAN model are the previously defined
generator model and the discriminator model. You should get the
following output:

Figure 7.41: GAN model summary

Please note that the parameters of each layer of the GAN model are equivalent
to the parameters of the generator and discriminator models. The GAN model is
just a wrapper around the two models we defined earlier.

434 | Appendix

15. Define the number of epochs to train the network on using the following code:

Defining the number of epochs

nEpochs = 5000

16. Now, we can start the process of training the network:

Note:

Before you run the following code, make sure you have created a folder
called output in the same path as your Jupyter Notebook.

Activity7.01.ipynb

Train the GAN network
for i in range(nEpochs):
 """
 Generate samples equal to the batch size
 from the real distribution
 """
 x_real = realData(batch)
 #Generate fake samples using the fake data generator function
 x_fake = fakedataGenerator(Genmodel,batch,infeats)
 # Concatenating the real and fake data
 X = np.concatenate([x_real,x_fake])
 #Creating the dependent variable and initializing them as '0'
 Y = np.zeros(batch * 2)

The complete code for this step can be found on https://packt.live/3fpobDm

It needs to be noted here that the training of the discriminator model with the
fake and real samples and the training of the GAN model happens concurrently.
The only difference is the training of the GAN model proceeds without updating
the parameters of the discriminator model. The other thing to note is that, inside
the GAN, the labels for the fake samples would be 1 to generate large loss terms
that will be backpropagated through the discriminator network to update the
generator parameters. We also display the predicted probability of the GAN
for every 50 epochs. When calculating the probability, we combine a sample of
real data and a sample of fake data and then take the mean of the predicted
probability. We also save a copy of the generated image.

You should get an output similar to the following:

Discriminator probability:0.5276428461074829

Discriminator probability:0.5038391351699829

Discriminator probability:0.47621315717697144

https://packt.live/3fpobDm

Chapter 7: Generative Adversarial Networks | 435

Discriminator probability:0.48467564582824707

Discriminator probability:0.5270703434944153

Discriminator probability:0.5247280597686768

Discriminator probability:0.5282968282699585

Let's also look at some of the plots that were generated from the training
process at various epochs:

Figure 7.42: Images generated during the training process

From the preceding plots, we can see the progression of the training process. We
can see that by epoch 100, the plots were mostly noise. By epoch 600, the forms
of the fashion articles started to become more pronounced. At epoch 1,500, we
can see that the fake images are looking very similar to the fashion dataset.

Note:

You can take a closer look at these images by going
to https://packt.live/2W1FjaI.

https://packt.live/2W1FjaI

436 | Appendix

17. Now, let's look at the images that were generated after training:

 # Images generated after training

x_fake = fakedataGenerator(Genmodel,25,infeats)

Displaying the plots

for j in range(5*5):

pyplot.subplot(5,5,j+1)

 # turn off axis

 pyplot.axis('off')

 pyplot.imshow(x_fake[j,:,:,0],cmap='gray_r')

You should get an output similar to the following:

Figure 7.43: Images generated after the training process

Chapter 7: Generative Adversarial Networks | 437

From the training accuracy levels, you can see that the accuracy of the
discriminator model hovers around the .50 range, which is the desired range.
The purpose of the generator is to create fake images that look like real ones.
When the generator generates images that look very similar to real images, the
discriminator gets confused as to whether the image has been generated from
the real distribution or fake distribution. This phenomenon manifests in an
accuracy level of around 50% for the discriminator, which is the desired level.

Note

To access the source code for this specific section, please refer
to https://packt.live/3fpobDm.

This section does not currently have an online interactive example, and will
need to be run locally.

https://packt.live/3fpobDm

Index

A
alexnet:14
algorithm: 4-5, 7,

109, 170, 172-173,
177, 194, 197,
203-206, 209, 212,
273, 319, 345

amazon: 309-310
argmax: 34-38, 43, 96
arithmetic:

201-203, 212
arrays: 22, 123, 231

B
binary: 47, 53, 56,

62, 65-67, 79, 82,
87, 89-91, 93, 101,
118, 129, 132-134,
179, 208, 277, 289,
294, 299, 303,
333-334, 337, 341,
345, 351, 354, 374

C
classifier: 62, 66-68,

76-77, 79, 82, 87,
91, 93, 101, 128,
144, 334, 384

convnet: 250, 259-260
convnets: 249-251,

255, 259-260
corpora: 174-175,

177, 205-206
corpus: 165-167,

174-175, 177, 197,
200, 205-206

cosine: 199, 202, 211

D
dataframe: 63, 72, 80,

219, 221-222, 239,
260, 324, 367, 382

dataframes:220
decoder: 236-237
dictionary: 171,

218, 281
dropout: 100-102,

241-243, 260,
276-277, 288-289,
294, 299, 302-303,
312, 368

E
embedding: 196, 198,

272-278, 280, 288,
294, 299, 302, 312

embeddings: 152,
155-156, 158,
179, 191-193,
196-197, 200,
202-212, 266, 270,
272-275, 277-278,
309, 311, 359

encoded: 70-71, 93,
179-181, 192, 196

encoder:236
entropy: 60, 74-75
epochs: 60-61, 82-83,

90, 94, 97, 99,
127-129, 134-135,
143-144, 149-150,
243, 245-246, 252,
257, 260, 276,
278-279, 289, 295,
300, 304, 306,
312, 337, 342-343,

348, 355, 367,
375-376, 379, 383

equation: 1, 23-24, 39,
41-42, 52, 188, 326

equations: 46, 241

F
features: 4-5, 14, 18,

38, 40, 46, 49-51,
56, 63-65, 69,
73-75, 77-78, 81,
83, 89, 92, 94-96,
102, 109-110, 115,
123-125, 127-128,
140-143, 149-150,
179-180, 182-183,
185-187, 189, 191,
239, 242, 249-250,
252, 254-257, 259,
262, 266, 301,
320, 324, 329-331,
335-336, 338-340,
347, 349, 370, 378

fillna:239
flatten: 77, 92-93,

126, 133, 142, 145,
251, 277, 368

frequency: 182-183,
186-188, 190,
321, 343

G
gating: 284, 286
gaussian:110
generator: 128-130,

132-134, 141-144,
151, 318-319,
325, 328-337,

339-347, 349-350,
352-355, 357-358,
361, 366-367,
370-372, 374-377,
380, 382-384

genmodel: 326-327,
329-331, 339-340,
342-345,
349-350, 352,
354-355, 370-372,
374-375, 377

gensim: 197,
207-208, 211

gradient: 39, 59-60,
74, 82, 97-99, 102,
267-268, 283-284,
291, 312, 345, 361

H
histogram:311

I
imagenet: 14-15,

147-149, 325
iterable:197

L
layers: 5-6, 13-14, 52,

58, 79-80, 84, 86-90,
92, 94, 97, 99-101,
118, 120-123,
125-126, 133, 142,
144-146, 148-151,
226-227, 229-230,
234, 236, 241-243,
251, 255, 260,
267, 272, 275-277,

284, 288-289, 294,
298-299, 301-303,
309, 312-313,
326-329, 331-332,
338, 341, 348,
359-361, 363, 368,
370, 373-374

lemmatize:171

M
matmul: 27-28,

51, 53-54, 57,
65, 74, 231

matplotlib: 62-63,
71, 77, 79, 88, 92,
219, 221, 223,
247-248, 253-254,
257, 259-260, 323,
329, 331, 338,
348, 368-369

matrix: 19, 22, 25-31,
33-37, 43, 46, 51,
53-57, 62, 64, 66,
71, 73-74, 76-78,
108, 110-113, 118,
184-185, 188, 196,
200, 203, 231-232,
240, 242, 272, 274,
278, 312, 326, 331

maxpooling: 126,
133, 142, 145, 251

modeling: 16, 158,
179, 215, 217, 261,
269, 272, 283-284,
291-292, 306, 309,
312-313, 332

models: 4-7, 12, 15,
41, 45-46, 79, 88,
92, 99, 106, 140,

145-150, 152, 155,
179, 197, 208,
215-216, 218, 237,
241, 243, 245,
261-262, 265-269,
275-277, 283, 292,
297, 301, 305-306,
309, 313, 316-317,
329, 338, 345, 348,
354, 361, 363, 368,
374-375, 384

multiclass: 45, 66-68,
71, 75, 79, 91-93,
97, 101-102, 144

multilayer: 45, 79,
84, 86-87, 91,
97, 101-102

N
neural: 1, 5, 13-16, 22,

24-25, 29-30, 34,
38-39, 41, 43, 45-47,
50, 52, 58-60, 64,
69, 76, 78-81, 84-87,
90-92, 94, 97-102,
105-106, 118, 123,
126-127, 134-135,
143, 145, 179, 196,
212, 215, 224-225,
230, 241, 243, 249,
265, 267, 272, 276,
317-318, 325-327,
334, 359-360,
363, 373, 384

neurons: 13, 45-47,
56-57, 67-69, 71, 74,
76-78, 81, 84-87,
92-93, 97, 99-102,
118, 126, 231-232,

240, 244, 248, 256,
260, 277, 279, 288,
312, 331, 341, 359

O
optimizer: 38-42,

58-61, 65, 74, 82,
90, 93, 97-98, 126,
133-134, 142-143,
145-146, 149-151,
244, 252, 257, 260,
277, 289, 294,
299, 303, 333,
337, 341, 344-345,
351, 354, 374

P
padding: 115-118,

121-122, 152, 272,
360, 363-364, 373

pandas: 62, 71, 77, 79,
88, 92, 219-221

parameters: 6, 24,
38-41, 55-56, 60,
62, 78, 81-84, 90,
93-94, 99-102,
112, 127, 131,
134, 155, 195-196,
203-204, 211, 240,
245, 249, 252,
255, 257, 267-268,
274, 278, 288-293,
295-297, 300-301,
304-306, 309, 312,
319, 327, 331-332,
340, 344-346,
350, 354-355, 371,
374-376, 379, 384

pathlib:131
perceptron: 1, 13,

45-49, 53-62,
65-66, 71, 74-75,
78-79, 84, 87, 97,
99, 102, 106, 359

pipeline: 128, 280, 283
pixels: 77, 108,

110, 115-117,
120, 129, 138

pooling: 80, 120-122,
133, 142, 250, 361

predict: 3, 7, 10,
38-39, 41, 75,
95, 97, 106, 118,
148-149, 194, 204,
212, 217-219, 235,
237, 239, 246, 248,
260, 273, 279-280,
282, 284, 288, 290,
294, 296, 299,
301-302, 304, 309,
312, 328, 331, 336,
340, 344, 346, 350,
362, 364, 370, 377

pyplot: 62, 71, 77,
79, 88, 92, 96, 219,
221, 323, 329, 331,
338, 348, 352-353,
368-369, 377

pytorch: 6, 18

Q
quadratic: 1, 41-42, 46

R
recurrent: 1, 16, 46,

212, 215, 224-225,
229-232, 234,
236-237, 240, 265,
276, 291, 293,
301, 317, 384

rescale: 129, 132,
140-141, 144, 151

rescaling: 135, 141
reshape: 10, 29-34,

43, 55, 77-78, 95,
123, 125, 144, 222,
241-243, 251, 256,
260, 324, 329,
335, 339, 349,
362, 364, 368

resnet: 7-9, 15
rmsprop: 39, 277,

289, 294, 299, 303

S
scalar:19
scalars:22
scaling:384
sentiment: 157-159,

163, 187, 216,
224-226, 234,
262, 265-266, 268,
273, 275-276, 280,
282-283, 288-289,
291, 294-295, 297,
299-300, 302, 309

sequence: 16, 25,
30, 112, 160,
215-219, 223-224,
234-238, 241-242,
249-251, 255-257,

259-262, 266, 268,
271-272, 280-282,
284, 298-299, 302,
306, 309-311, 317,
320-323, 344, 384

sequential: 79-82,
88-89, 92-93, 125,
133, 142, 149-150,
216, 241, 243, 251,
256, 277, 288,
294, 299, 302,
312, 326-327, 329,
337-340, 344-345,
348-349, 351, 354,
360-361, 363, 368,
370, 373-374

shearing:139
sigmoid: 52-54,

56-58, 60, 65, 67,
69, 74-75, 81, 87,
89, 99, 101, 122,
133, 277, 286, 289,
294, 299, 303, 312,
328, 341, 351,
367, 373-374

signals: 47-48,
101, 108

simplernn: 241-245,
256, 260, 277

skip-gram: 155, 196,
204-206, 211

sklearn: 61-62, 71,
77, 184, 189,
238, 260, 279

softmax: 67-69, 71,
74-75, 77, 87, 92-93,
101, 126, 142, 145,
148, 150-151

spatial: 288, 294,
299, 302, 312

stemmer:
170-173, 311

stemming: 169-173,
177, 179

stochastic: 39, 41, 60,
98, 332, 353, 356

stopwords:
165-167, 311

stride: 114-115,
117-118, 120-122,
152, 250, 360, 364

strides: 2, 6, 122, 316,
360, 363-364, 373

subplot: 369, 377

T
tensor: 6, 19-22, 29,

31, 34, 38, 55-57,
59, 113-114

tensorflow: 1, 6-8, 12,
18-19, 22-23, 25,
27-31, 36, 39-40, 43,
45-46, 49-51, 53,
55-56, 58-60, 62, 64,
68, 71, 76-77, 79,
87-88, 92, 97, 105,
113-114, 121-125,
129-130, 132-133,
140-142, 144,
146-149, 151-152,
230-233, 241, 243,
251, 269, 271,
276-277, 280-281,
288, 294, 299,
310, 326, 328-329,
338, 348, 360-361,
363, 368, 382

tensors: 19, 34, 43, 64

tf-idf: 187-188,
190, 212

tokenize: 155,
160-162, 166-167,
170-171, 177,
280, 311

tokenizer: 160, 166,
186, 310-311

training: 3, 7, 38, 41,
50, 54, 58-62, 64-65,
71, 74-76, 82-83,
90, 92-94, 97-100,
112, 120-121,
124-125, 127-130,
132, 135-136, 141,
143-147, 149-151,
196-197, 205,
207, 238, 241,
243, 245-246,
252, 255, 257,
267-268, 271-273,
276, 278-279,
281, 289-292,
295-297, 300-301,
304-306, 312,
325-326, 333-334,
336-337, 342-348,
352, 354-355, 363,
365-368, 372, 374,
376-377, 379-383

train-test:238
transform: 73, 77,

128, 178, 185-186,
189, 238, 246-247,
325, 328, 361

transpose: 30,
363-364,
370-371, 384

U
upsampling: 361-363,

368, 370, 384

V
validation: 127-135,

143-145, 149-151,
245, 252-253, 257,
260, 278-279,
289-290, 295-296,
300-301, 304, 312

vanishing: 99, 267,
283-284, 291, 312

vector: 4, 19, 24,
46, 55, 192, 196,
198-204, 212, 251,
272, 274, 312

vectorizer:
184-190, 310

vectors: 19, 22, 155,
192-193, 196,
198-205, 207-209,
211-212, 216,
272-273, 277, 280

vocabulary: 183-191,
196, 207-208, 269,
272, 274, 279-281,
283, 310-311

W
weights: 49-51, 57-61,

65, 69, 74-75, 78,
90, 94, 98-99, 135,
144, 146-150, 196,
229-231, 240, 243,
250, 273, 276, 288,
307, 309, 326, 331,
344, 363, 365, 380

wordnet:171
wordrank:210

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: Building Blocks of Deep Learning
	Introduction
	AI, Machine Learning, and Deep Learning
	Machine Learning
	Deep Learning
	Using Deep Learning to Classify an Image
	Pre-Trained Models
	The Google Text-to-Speech API
	Prerequisite Packages for the Demo

	Exercise 1.01: Image and Speech Recognition Demo
	Deep Learning Models
	The Multi-Layer Perceptron
	Convolutional Neural Networks
	Recurrent Neural Networks

	Generative Adversarial Networks

	Introduction to TensorFlow
	Constants
	Variables
	Defining Functions in TensorFlow

	Exercise 1.02: Implementing a Mathematical Equation
	Linear Algebra with TensorFlow
	Exercise 1.03: Matrix Multiplication Using TensorFlow
	The reshape Function
	Exercise 1.04: Reshaping Matrices Using the reshape() Function in TensorFlow
	The argmax Function
	Exercise 1.05: Implementing the argmax() Function
	Optimizers
	Exercise 1.06: Using an Optimizer for a Simple Linear Regression
	Activity 1.01: Solving a Quadratic Equation Using an Optimizer

	Summary

	Chapter 2: Neural Networks
	Introduction
	Neural Networks and the Structure of Perceptrons
	Input Layer
	Weights
	Bias
	Net Input Function
	Activation Function (G)
	Perceptrons in TensorFlow

	Exercise 2.01: Perceptron Implementation

	Training a Perceptron
	Perceptron Training Process in TensorFlow
	Exercise 2.02: Perceptron as a Binary Classifier
	Multiclass Classifier
	The Softmax Activation Function

	Exercise 2.03: Multiclass Classification Using a Perceptron
	MNIST Case Study
	Exercise 2.04: Classifying Handwritten Digits

	Keras as a High-Level API
	Exercise 2.05: Binary Classification Using Keras
	Multilayer Neural Network or Deep Neural Network
	ReLU Activation Function
	Exercise 2.06: Multilayer Binary Classifier
	Exercise 2.07: Deep Neural Network on MNIST Using Keras

	Exploring the Optimizers and Hyperparameters of Neural Networks
	Gradient Descent Optimizers
	The Vanishing Gradient Problem
	Hyperparameter Tuning
	Overfitting and Dropout

	Activity 2.01: Build a Multilayer Neural Network to Classify Sonar Signals
	Summary

	Chapter 3: Image Classification with Convolutional Neural Networks (CNNs)
	Introduction
	Digital Images
	Image Processing
	Convolution Operations
	Exercise 3.01: Implementing a Convolution Operation
	Stride
	Padding

	Convolutional Neural Networks
	Pooling Layers
	CNNs with TensorFlow and Keras
	Exercise 3.02: Recognizing Handwritten Digits (MNIST) with CNN Using KERAS
	Data Generator
	Exercise 3.03: Classifying Cats versus Dogs with Data Generators

	Data Augmentation
	Horizontal Flipping
	Vertical Flipping
	Zooming
	Horizontal Shifting
	Vertical Shifting
	Rotating
	Shearing
	Exercise 3.04: Image Classification (CIFAR-10) with Data Augmentation
	Activity 3.01: Building a Multiclass Classifier Based on the Fashion MNIST Dataset

	Saving and Restoring Models
	Saving the Entire Model
	Saving the Architecture Only
	Saving the Weights Only

	Transfer Learning
	Fine-Tuning
	Activity 3.02: Fruit Classification with Transfer Learning

	Summary

	Chapter 4: Deep Learning for Text – Embeddings
	Introduction
	Deep Learning for Natural Language Processing
	Getting Started with Text Data Handling
	Text Preprocessing
	Tokenization
	Normalizing Case
	Removing Punctuation
	Removing Stop Words

	Exercise 4.01: Tokenizing, Case Normalization, Punctuation, and Stop Word Removal
	Stemming and Lemmatization
	Exercise 4.02: Stemming Our Data
	Beyond Stemming and Lemmatization
	Downloading Text Corpora Using NLTK

	Activity 4.01: Text Preprocessing of the 'Alice in Wonderland' Text
	Text Representation Considerations

	Classical Approaches to Text Representation
	One-Hot Encoding
	Exercise 4.03: Creating One-Hot Encoding for Our Data
	Term Frequencies
	The TF-IDF Method
	Exercise 4.04: Document-Term Matrix with TF-IDF
	Summarizing the Classical Approaches

	Distributed Representation for Text
	Word Embeddings and Word Vectors
	word2vec

	Training Our Own Word Embeddings
	Semantic Regularities in Word Embeddings
	Exercise 4.05: Vectors for Phrases
	Effect of Parameters – "size" of the Vector
	Effect of Parameters – "window size"

	Skip-gram versus CBOW
	Effect of Training Data

	Exercise 4.06: Training Word Vectors on Different Datasets
	Using Pre-Trained Word Vectors
	Bias in Embeddings – A Word of Caution
	Other Notable Approaches to Word Embeddings
	Activity 4.02: Text Representation for Alice in Wonderland

	Summary

	Chapter 5: Deep Learning for Sequences
	Introduction
	Working with Sequences
	Time Series Data – Stock Price Prediction
	Exercise 5.01: Visualizing Our Time-Series Data

	Recurrent Neural Networks
	Loops – An Integral Part of RNNs
	Exercise 5.02: Implementing the Forward Pass of a Simple RNN Using TensorFlow
	The Flexibility and Versatility of RNNs
	Preparing the Data for Stock Price Prediction
	Parameters in an RNN
	Training RNNs
	Exercise 5.03: Building Our First Plain RNN Model
	Model Training and Performance Evaluation
	1D Convolutions for Sequence Processing
	Exercise 5.04: Building a 1D Convolution-Based Model
	Performance of 1D Convnets
	Using 1D Convnets with RNNs
	Exercise 5.05: Building a Hybrid (1D Convolution and RNN) Model
	Activity 5.01: Using a Plain RNN Model to Predict IBM Stock Prices

	Summary

	Chapter 6: LSTMs, GRUs, and Advanced RNNs
	Introduction
	Long-Range Dependence/Influence
	The Vanishing Gradient Problem
	Sequence Models for Text Classification
	Loading Data
	Staging and Preprocessing Our Data

	The Embedding Layer
	Building the Plain RNN Model
	Exercise 6.01: Building and Training an RNN Model for Sentiment Classification

	Making Predictions on Unseen Data
	LSTMs, GRUs, and Other Variants
	LSTMs

	Parameters in an LSTM
	Exercise 6.02: LSTM-Based Sentiment Classification Model

	LSTM versus Plain RNNs
	Gated Recurrence Units
	Exercise 6.03: GRU-Based Sentiment Classification Model
	LSTM versus GRU

	Bidirectional RNNs
	Exercise 6.04: Bidirectional LSTM-Based Sentiment Classification Model

	Stacked RNNs
	Exercise 6.05: Stacked LSTM-Based Sentiment Classification Model

	Summarizing All the Models
	Attention Models
	More Variants of RNNs
	Activity 6.01: Sentiment Analysis of Amazon Product Reviews

	Summary

	Chapter 7: Generative Adversarial Networks
	Introduction
	Key Components of Generative Adversarial Networks
	Problem Statement – Generating a Distribution Similar to a Given Mathematical Function
	Process 1 – Generating Real Data from the Known Function
	Exercise 7.01: Generating a Data Distribution from a Known Function
	Process 2 – Creating a Basic Generative Network
	Building the Generative Network
	Sequential()
	Kernel Initializers
	Dense Layers
	Activation Functions

	Exercise 7.02: Building a Generative Network
	Setting the Stage for the Discriminator Network
	Process 3 – Discriminator Network
	Implementing the Discriminator Network
	Function to Generate Real Samples
	Functions to Generate Fake Samples
	Building the Discriminator Network
	Training the Discriminator Network

	Exercise 7.03: Implementing the Discriminator Network
	Process 4 – Implementing the GAN
	Integrating All the Building Blocks

	Process for Building the GAN
	The Training Process
	Exercise 7.04: Implementing the GAN

	Deep Convolutional GANs
	Building Blocks of DCGANs
	Generating Handwritten Images Using DCGANs
	The Training Process

	Exercise 7.05: Implementing the DCGAN
	Analysis of Sample Plots
	Common Problems with GANs
	Mode Collapse
	Convergence Failure

	Activity 7.01: Implementing a DCGAN for the MNIST Fashion Dataset

	Summary

	Appendix
	Index

